
Robotics and Autonomous Systems 74 (2015) 1–14
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Joint localization and target tracking with a monocular camera
Abdul Basit a,b,∗, Matthew N. Dailey a, Jednipat Moonrinta a, Pudit Laksanacharoen c

a Asian Institute of Technology, Klong Luang Pathumthani (12121), Thailand
b University of Balochistan, Quetta (87300), Pakistan
c King Mongkut’s University of Technology North Bangkok, Bangsue (10800), Bangkok, Thailand

h i g h l i g h t s

• Joint localization fuses target dynamics and pursuit robot kinematics to improve trajectories estimation.
• An adaptive histogram similarity threshold correctly suspend tracking and localization when target is occluded.
• A fast target redetection method avoids false detections and improves accuracy.
• Redetection successfully reinitializes visual tracking and state estimation correction.

a r t i c l e i n f o

Article history:
Received 3 March 2014
Received in revised form
28 April 2015
Accepted 27 May 2015
Available online 10 June 2015

Keywords:
Joint localization
Pursuit robot
Unmanned ground vehicles
Differential drive kinematics
Target dynamics
Tracking suspension
Histogram backprojection
Target redetection
Tracking reinitialization

a b s t r a c t

Localization capabilities are necessary for autonomous robots that need to keep track of their positionwith
respect to a surrounding environment. A pursuit robot is an autonomous robot that tracks and pursues a
moving target, requiring accurate localization relative to the target’s position and obstacles in the local
environment. Small unmanned ground vehicles (SUGVs) equipped with a monocular camera and wheel
encoders could act as effective pursuit robots, but the noisy 2D target position and size estimates from the
monocular camerawill in turn lead to overly noisy 3D target pose estimates. One possible approach to rel-
ative localization for pursuit robots is, rather than simply tracking and estimating a relative robot–target
position in each frame, joint localization, inwhich the purser and target are both localizedwith respect to a
common reference frame. In this paper, we propose a novelmethod for joint localization of a pursuit robot
and arbitrary target. The proposed method fuses the pursuit robot’s kinematics and the target’s dynam-
ics in a joint state space model. We show that predicting and correcting pursuer and target trajectories
simultaneously produces improved results compared to standard filters for estimating relative target tra-
jectories in a 3D coordinate system. For visual tracking,we also introduce an adaptive histogrammatching
threshold for suspending trackingwhen the target is lost in a cluttered environment.When tracking is sus-
pended, rather than traversing the entire image to search for a reappearance of the target, we only search
the part of the image segmented by histogram backprojection and correctly reinitialize the tracker. The
experimental results show that the joint localization method outperforms standard localization methods
and that the visual tracker for pursuit robot can deal effectively with target occlusions.

© 2015 Published by Elsevier B.V.
1. Introduction

Small unmanned ground vehicles (SUGVs) such as the PackBot,
SARGE and Gladiator [1] are useful for gathering information about
environments where access by human beings is either impossible

∗ Corresponding author at: Asian Institute of Technology, Klong Luang
Pathumthani (12121), Thailand.

E-mail addresses: abasit@uob.edut.pk, abdulbasitkhan@gmail.com (A. Basit),
mdailey@ait.asia (M.N. Dailey), jednipat@ait.ac.th (J. Moonrinta), stl@kmutnb.ac.th
(P. Laksanacharoen).

http://dx.doi.org/10.1016/j.robot.2015.05.012
0921-8890/© 2015 Published by Elsevier B.V.
or dangerous. They are portable, lightweight and inexpensive. Such
robots are becoming increasingly common inmilitary applications
and disaster areas such as the damaged Fukushima nuclear plant.

One intriguing application of small autonomous vehicle is pur-
suit. Robot pursuit applications include human security, e.g., fol-
lowing and monitoring important people or pursuing suspicious
people in security ormilitary contexts. Although pursuit can be ac-
complished through teleoperation, [2,3], in situations where fast
decision making is crucial, pursuit robots should be capable of
making decisions autonomously.

In our work, we investigate the feasibility of autonomous
pursuit of targets using SUGVs. We use a custom-made all-terrain

http://dx.doi.org/10.1016/j.robot.2015.05.012
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.05.012&domain=pdf
mailto:abasit@uob.edut.pk
mailto:abdulbasitkhan@gmail.com
mailto:mdailey@ait.asia
mailto:jednipat@ait.ac.th
mailto:stl@kmutnb.ac.th
http://dx.doi.org/10.1016/j.robot.2015.05.012


2 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
Fig. 1. All-terrain robot for tracking and pursuit of arbitrary target objects using a monocular camera.
surveillance robot similar to the iRobot PackBot that is equipped
with teleoperation capabilities and mounted with a monocular
camera, as shown in Fig. 1. We focus on the special case of
monocular vision-based localization and tracking of the target’s
position relative to the purser in a 3D coordinate system, without
the use of any 3D sensor.

Although the use of a monocular camera as the main sensor
simplifies the design and lowers the cost of the robot, it presents
additional challenges. First, since depth estimates based on
monocular cues will necessarily be extremely noisy, to obtain
usable target position estimates from themoving camera, we need
a smooth and stable sensor modeling and state filtering technique.
Second, tracking an object during target pursuit requires a tracker
that is both sufficiently accurate and sufficiently fast to keep track
of the target in real time.

In the following subsections, we introduce related work in
target pursuit, localization, and 2D target tracking. Afterwards, we
outline the specific contributions of our work.

1.1. Target pursuit

The problem of autonomous pursuit and person following has
been addressed in the robotics literature. A great deal of the
work has benefitted from the use of laser range finders. Kobilarov
et al. [4] propose a method for a mobile robot equipped with a
laser range finder and an omnidirectional camera to track and fol-
low a person in outdoor environments. Each laser scan is processed
and converted into connected components (blobs) that may be ob-
tained from humans present in the laser field of view. Additional
measurements are obtained from the regions in the image corre-
sponding to each of these objects. Awai et al. [5] use a camera and
laser range finder with a mobile robot for person following capa-
ble of autonomous return. Person tracking is performed using HOG
features, color information, and the shape of range data. Themobile
robot operates in 2D in a static, flat environment. Ohshima et al. [6]
achieve person following using a laser range finder, the output of
which is combined with odometry data to localize the specific tar-
get and other objects and to estimate the target’s motion. The tar-
get moves slowly, less than 1 m/s. The pursuer stays close to the
target to avoid interference by other objects. Sung et al. [7] pro-
pose a method to identify legs in laser scans, group the legs into
people, and track a target person robustly over a time period using
defined attributes.

Other related work has used stereo imaging. Yoshimi et al. [8]
developed a robot that can follow a person using vision-based
target detection and can also avoid obstacles with the help of
ultrasonic sensors. The authors use stereo vision for tracking
people. They describe an algorithm for extracting information on
the distance to each feature point, the speed of the target, and the
color and texture of the target’s clothing, obtaining stable tracking
and robust operation in dynamic environments. Chen et al. [9]
present a vision-based algorithm that uses Lucas–Kanade feature
detection and matching to find the location of the target in the
image and control the robot. Matching is performed between a
pair of stereo images including matches between successive video
frames. The authors use a RANSAC algorithm to segment the sparse
disparity map and estimate a motion model for the target and
background.

In more recent work, Choi et al. [10] propose a method for
multi-target detection and tracking of people with occlusions in
indoor environments. Results from various detection algorithms
such as face, skin color, upper body, depth based shape, andmotion
detectors are fused using a specialized sampling and particle filter
procedure.

All of the aforementioned methods use laser ranging, stereo, or
depth cameras to obtain 3D information for tracking the target,
andmost have only been tested in indoor environments. Detectors
such as those proposed by Choi et al. would complement and
possibly improve the accuracy of the methods reported upon in
this paper, at the cost of additional processing time. However, a
single, monocular camera would be much simpler to integrate and
more cost effective in a commercial product than these ranging
sensors, so our focus is on obtaining high accuracy tracking of a
single target with the low cost, light weight, and fast processing
speed of algorithms incorporating only a monocular camera and
color-based appearance models.

On the other hand, there are numerous challenges to the use of
such a simple sensor. Monocular cameras do not directly provide
any 3D information. It may also be easier for a target to blend into
the background in a monocular video stream, especially outdoors.
Any solutionmust thus effectively integrate partial, noisy informa-
tion from multiple observations and must handle occlusions and
target loss robustly. Our method addresses these challenges.

1.2. Localization

Localization refers to sequential state estimation techniques
used by robots to keep track of their position with respect to the
surroundings. Localization is used extensively in SLAM [11,12], vi-
sual tracking [13], and 3D reconstruction. Some of the widely used
methods include the extended Kalman filter, particle filters [14],
and grid-based methods. The EKF is the simplest, fastest, and most
widely used technique [15–17] for mobile robot localization.

Most methods for mobile robot localization combine odometry
data with measurements of bearing and/or distance to static
landmarks. In pursuit applications, however, the pursuer must
localize itself not only with respect to the static environment,
but also with respect to the target. For this reason, our joint
localizationmethod treats the target itself as amobile landmark for
localization, integrating pursuer kinematics and target dynamics to
obtain smooth, accurate localization estimates for both the pursuer
and the target.

1.3. 2D object tracking

We categorize the common 2D image-based tracking algo-
rithms as to whether they utilize feature matching, optical flow, or
feature histograms. Feature matching algorithms such as SIFT [18],



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 3
SURF [19], and shape matching algorithms such as contour match-
ing [20] are potentially useful for tracking, but they are slow.
Calonder et al. [21] introduce BRIEF (Binary Robust Independent
Elementary Features) to improve the speed performance of the
SIFT descriptor, but it is very sensitive to in-plane rotations. Rublee
et al. [22] introduce ORB (Oriented FAST and Rotated BRIEF) to
overcome the limitations of BRIEF. Dalal et al. [23] introduce the
histogram of oriented gradients (HOG) descriptor for pedestrian
detection in static images, andMunaro at el. [24] use HOG descrip-
tors in a classification phase to track people with a mobile robot
and RGB-D sensor. All of these methods are potentially effective,
but they are too computationally expensive to be considered for
real-time tracking by a moving robot with modest computational
resources, and they would require additional support [25,26,24] to
model target appearance for purposes of target redetection after
it leaves and reenters the field of view tracking by a moving robot
with modest computation resources.

Optical flow methods [27] may be within reach in terms of
speed, but they do not maintain an appearance model. This means
they are unable (by themselves) to recover from occlusions and the
target leaving the field of view. Zajdel et al. [28] extend an optical
flow technique to enable a mobile robot to track and redetect
the target when the target is lost and reappears in camera’s field
of view, but only indoor environments were considered, and the
optical flow algorithm used for tracking is unable to track the
target’s shape and size.

Histogram-based trackers, on the other hand, are not only fast,
but also maintain an appearance model that is potentially useful
for recovering tracking after an occlusion or reappearance in the
field of view. In this paper, for the visual tracker, we thus consider
the problem of redetecting the target object once the target is lost
in occlusion or from image field of view. We assume that the goal
is to search for the target object in every frame without any bias as
to where the object might appear.

To execute this target search in the entire image, the common
approach in computer vision would be the sliding window over
the image at multiple scales and compare with a target model. To
improve the naive sliding window search, Porikli [29] propose an
‘‘integral histogram’’ method using integral images. Perreault and
Hebert [30] compute histograms for median filtering efficiently by
maintaining separate column-wise histograms, and, as the sliding
windowmoves right, first updating the relevant column histogram
then adding and subtracting the relevant columnhistograms to the
histogram for the slidingwindow. Sizintsev et al. [31] take a similar
approach to obtain histograms over sliding windows by efficiently
updating the histogram using previously calculated histograms for
overlapping windows.

However, although it is possible to compute sliding window
histograms in constant time perwindow location, the computation
may still not be fast enough if multiple window sizes and aspect
ratios must be considered, and furthermore, finding a single best
rectangular window still does not give a precise object shape
and orientation. Chen et al. [32,33] address the speed issue by
scattering randomly generated elliptical regions over the image in
a first rough detection phase and address the precision issue by
performing fine searches from the more likely candidate regions.

CAMSHIFT (Continuously Adaptive Mean Shift) [34,35] is a fast
and robust feature histogram tracking algorithm potentially useful
for mobile robots in outdoor environments. The method begins
withmanual initialization from a target image patch. It then tracks
that region using a combination of color histograms, the basic
mean-shift algorithm [36,37], and an adaptive region-sizing step.
It is scale and orientation invariant. To the best of our knowledge,
no other method is comparable in terms of processing speed. The
main drawback of CAMSHIFT is that if the target leaves the field of
view or is occluded, the algorithm either reports an error or starts
tracking a completely different object. In the work reported in this
paper, we eliminate that drawback.

In this paper, we incorporate an adaptive histogram similarity
threshold with CAMSHIFT to help avoid tracking false targets. We
also use this adaptive similarity threshold with a backprojection
technique to recover the target object and reinitialize the
CAMSHIFT visual tracker after an occlusion.

1.4. Contributions

The challenges in pursuit target tracking with a monocular
camera are that (1) the 2D tracker must be sufficiently fast and
accurate, (2) it must be possible to estimate a 3D position based
on the 2D tracker’s output, and (3) there must be a way to
overcome the extreme noise inherent in estimating 3D positions
from monocular cues.

In this paper, we introduce a method that addresses these chal-
lenges. To reduce target position estimation error caused by noisy
monocular depth cues, we propose a joint localizationmethod. The
model maintains an estimate of the state of the target, assuming
a linear dynamical model, as well as an estimate of the pursuit
robot’s state, assuming differential drive robot kinematics [38,39].
We thus fuse information from 2D visual tracking and the SUGV’s
wheel encoderswith knowledge of the robot’s kinematics in a joint
localization filter to obtain superior state estimation.

To handle cases where the target is occluded or leaves the
scene, we additionally propose a fastmethod for suspending visual
tracking. The decision to suspend tracking is based on an adaptive
threshold applied to the dissimilarity between the CAMSHIFT
region’s color histogram and the stored appearance model, as well
as heuristic limitations on changes in the tracking window’s size.

To ensure that the target is re-acquired when a lost target
reappears, we also propose a real-time target object redetection
method. The redetection method is based on backprojection of
the appearance model, thresholding of the per-pixel likelihood,
and connected components analysis, resulting in a collection of
candidate regions, the best of which is selected if it is sufficiently
likely according to the appearance model.

In an empirical evaluation, we show, on real-world videos, that
the proposed method is a robust approach to target tracking and
reinitialization during pursuit that is successful at reinitialization,
has very low false positive rates, and runs in real time.

This paper includes revised and extended materials from
two conference papers on state estimation [40] and the visual
tracker [41]. The state estimation method was previously only
tested in simulation, and the visual tracker was only tested
in isolation from the pursuit robot. The proposed method in
this paper is also proposed and tested with the Unmanned
Aerial Vehicle (UAV) [42]. In this paper, we provide complete
descriptions of each algorithm, and we evaluate the method using
a complete, real-world implementation of the joint localization
method, incorporating the 2D visual trackerwith the pursuit robot.
We provide additional detailed experimental results in real-world
scenarios both indoors and outdoors. We have also carried out
additional evaluations of the tracker with both online data and the
pursuit robot’s camera and with multiple objects in the scene.

2. Algorithm design

In this section, we briefly describe the basic algorithm flow for
the entire system, then in later sections, we separately describe the
proposed joint localization method and the 2D visual tracker for
SUGVs in detail.

The proposed algorithm for state estimation by pursuit robots
combines a visual object tracking algorithm using monocular
camera and a filter incorporating both target dynamics and



4 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
Fig. 2. Algorithm flow diagram. The green box contains the CAMSHIFT tracking
phase of the algorithm. The blue box contains the processing occurring in the
redetection phase, when the target is not in the scene. The red box contains the
EKF motion model for fusing and filtering the odometry and target tracking data.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

differential drive kinematics to produce stable and accurate target
and robot state estimates simultaneously.

We refer the reader to Fig. 2. So long as the targetis in the scene,
on each input image, we apply the standard CAMSHIFT algorithm.
On each frame, CAMSHIFT returns an estimated target position and
size in the 2D image. To transform the 2D information to 3D, we
take the ray from the camera’s center through the image plane at
the center of the 2D bounding box and calculate the depth of the
target along that ray using the (assumed given) height of the target
in an absolute frame. Meanwhile, we acquire odometry data in the
form (dx, dy, dθ ), where (dx, dy) describes the linear displacement
of the robot and dθ describes the angular displacement of the
robot. The target tracking result and odometry are fed to the EKF,
which predicts the new state based on the previous estimate then
corrects the state estimate based on the newmeasurements. If the
target is occluded or leaves the scene, we stop 2D tracking and
state estimate correction and run the redetection algorithm until
the target reappears, at which time we restart the normal flow
of the algorithm. In the following sections, we describe the joint
localization and visual tracking steps in detail.

3. Joint estimation of robot and target state

In this section, we introduce the state estimation model. We
model the robot’s state, the target’s state, and the color region
tracking sensor just described in the extended Kalman filter
framework.

3.1. System state

The system state expresses the pursuit robot’s position and the
target’s position and dynamics in the world coordinate frame. We
define the system state at time t to be

xt =

xt , yt , zt , ẋt , ẏt , żt , xrt , y

r
t , z

r
t , γ

r
t , βr

t , α
r
t

T
, (1)

where (xt , yt , zt) is the target’s position, (ẋt , ẏt , żt) is the target’s
velocity, (xrt , y

r
t , z

r
t ) is the pursuit robot’s position, and (γ r

t , βr
t , α

r
t )

is the pursuit robot’s 3D orientation (roll, pitch and yaw). The
positions and orientations are expressed in the world coordinate
frame.

3.2. State transition

Weassume that initially, the specific position and orientation of
robot coordinate with respect to world coordinate frame is either
given to us or the robot position is considered (0, 0, 0) and its
orientation is assumed aligned to world coordinate orientation
(0, 0, 0). We further assume that the vehicle has differential drive
kinematics and is equipped with two encoders, one for each drive
wheel. The odometry control vector is

ut =

dLt dRt

T
, (2)

where dLt is the distance traveled by the left wheel and dRt is the
distance traveled by the right wheel. The distances are calculated
from the number of ticks per revolution, the wheel base, and the
diameter of the wheels. The motion model is

xt+1 = f(xt ,ut)+ νt , (3)

where νt ∼ N (0, Qt). f(xt ,ut) has two components. The first com-
ponent models the kinematics of a differential drive robot, and the
second component is a first order linear dynamical system for the
target’s motion. See Fig. 3 for a schematic. We describe each com-
ponent in turn.

3.2.1. Pursuit robot motion
For the robot’s motion, we first introduce some intermediary

variables for convenience. The linear distance traveled by the robot
over the interval in the robot coordinate is

ds =
dLt + dRt

2
. (4)



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 5
The change in yaw in the robot coordinate system is

dα =
dLt − dRt

l
, (5)

where l is the wheel base (the distance between the two wheels).
If dα ≠ 0, we can write the turning radius

R =
ds
dα

. (6)

With finite R, the robot’s displacement in the robot coordinate
system is defined by
dx
dy


= R


sin(dα)

1− cos(dα)


. (7)

Note that in addition to arc motions, this also covers the special
case of rotation in place, where dLt = −d

R
t and R = 0. However, for

the special case of straight motion, when dLt = dRt and dα = 0, we
take the limit of Eq. (7) as R→∞ to obtain
dx
dy


=


ds
0


. (8)

To convert the robot’s relative motion in the robot’s ground plane
into theworld coordinate frame, wemust rotate by the orientation
of the robot’s ground plane represented by Rt at time t:xrt+1

yrt+1
zrt+1

 =
xrt
yrt
zrt

+ Rt

dx
dy
0


, (9)

expanding Rt in detail, we getxrt+1
yrt+1
zrt+1

 =
xrt
yrt
zrt

+ dxcαt cβt + dy(cαt sβt sγt − sαt cγt )
dxsαt cβt + dy(sαt sβt sγt + cαt cγt )

−dxsβt + dycβt sγt


, (10)

where c· and s· are abbreviations for the cosine and sine functions.
To determine αt+1, βt+1, and γt+1, we let R be the rotation ma-

trix corresponding to a rotation of dα around the z axis in the
robot’s ground plane. Then the new orientation of the vehicle, ex-
pressed as a rotation matrix, is
Rt+1 = RtR. (11)
We can easily extract Euler rotations from the above equation.

3.2.2. Target motion
We assume the simple linear dynamics

xt+1 = xt +∆t ẋt
yt+1 = yt +∆t ẏt
zt+1 = zt +∆t żt (12)
ẋt+1 = ẋt
ẏt+1 = ẏt
żt+1 = żt
for the target object’s state.

3.2.3. Linearization
Since f(xt ,ut) is nonlinear and we must approximate the

system described in Eq. (3) by linearizing around an arbitrary point
x̂t . We write

f(xt ,ut) ≈ f(x̂t ,ut)+ Jft (xt − x̂t), (13)
where Jft is the Jacobian

Jft =


∂f(xt ,ut)

∂xt


(14)

evaluated at x̂t . We omit the Jacobian calculations.
Fig. 3. Schematic of robot motion model. l is the wheel base, ds is the distance
traveled (arc length), R is the turning radius, and dα is the angle turned.

3.3. Sensor model

The target 2D position, size and orientation are received from
the tracking and redetection functions. See Section 4.

Themeasurement from such an algorithm is simply a bounding
box at time t:

zt =

ut , vt , w

img
t , himg

t

T
. (15)

We model the sensor with a function h(·) mapping the system
state xt to the corresponding sensor measurement

zt = h(xt)+ ζt , (16)
with ζ ∼ N (0, St).

For a pinhole camera with focal length f and principal point
(cx, cy), ignoring any in-plane rotation of the cylindrical object, we
can write

ut = (fxcamt + cx)/zcamt

vt = (fycamt + cy)/zcamt

w
img
t = fw0/zcamt

himg
t = fh0/zcamt , (17)

where (h0, w0) is the assumed target’s height and width.
Here xcamt = [xcamt , ycamt , zcamt , 1]T is the homogeneous repre-

sentation of the rigid transformation of the target’s center into the
camera coordinate system:

xcamt = TW/C
t

xt
yt
zt
1

 , (18)

where the transformation TW/C
t is defined as

TW/C
t = TR/CTW/R

t . (19)

TW/R
t is the rigid transformation from the world coordinate system

to the robot coordinate at time t , and TR/C is the (fixed) transfor-
mation from the robot coordinate system to the camera coordinate
system. We can write

TW/R
t =


RT
t −RT

t x
r
t

0T 1


, (20)

where xrt = (xrt , y
r
t , z

r
t ) and RT

t represents the orientation of the
robot in the world coordinate frame.

As with the transition model, to linearize h(xt) around an
arbitrary point x̂t , we require the Jacobian

Jht =


∂h(xt)
∂xt


(21)

evaluated at an arbitrary point x̂t .



6 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
3.4. Initialization

To initialize the system, we need an a-priori state vector x0. As
previously explained, we assume that the robot is at the origin of
the world coordinate system or that an alternative initial position
is given. We do not assume any knowledge of the target’s initial
trajectory. We can therefore treat the user-provided initial target
bounding box as a first sensor measurement z0 and write

x̂0 = [x0, y0, z0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T = hinv(z0). (22)
We only need to estimate the initial world-coordinate position
(x0, y0, z0) of the target from z0. We first obtain an initial position
[xcam0 , ycam0 , zcam0 , 1]T in the camera coordinate frame then, noting
that the robot frame at time 0 is also the world frame, we can map
to the world coordinate frame byx0

y0
z0
1

 = 
TR/C−1


xcam0

ycam0

zcam0

1

 . (23)

Inspecting the system in Eq. (17),we can find xcam0 and ycam0 given
ut and vt if zcam0 is known.We can obtain zcam0 fromw

img
0 or himg

0 . We
get zcam0 = fh0/h

img
0 . We use himg

0 instead of w
img
0 on assumption

that the user-specified bounding box is more accurate vertically
than horizontally.

3.5. Noise parameters

The sensor noise is given by the matrix St . We assume that
the measurement noise for both the bounding box center and the
bounding box size are a fraction of the target’s width and height in
the image:

St = λ2


(w

img
t )2 0 0 0
0 (himg

t )2 0 0
0 0 (w

img
t )2 0

0 0 0 (himg
t )2

 . (24)

We use λ = 0.15 in our simulations. For the initial state error
denoted byP0, we propagate themeasurement error for z0 through
hinv(z0) and take into account the initial uncertainty about the
target’s velocity:
P0 = JhinvS0Jhinv + diag(0, 0, 0, η, η, η, 0, 0, 0, 0, 0, 0). (25)
η is a constant and Jhinv is the Jacobian of hinv(·) evaluated at z0.

We assume for simplicity that the state transition noise covari-
ance Qt is diagonal. We let

vt =


ẋ2t + ẏ2t + ż2t , (26)

and then we let the entries of Qt corresponding to the target posi-
tion be ∆2

t (ρ1v
2
t + ρ2) and the entries of Qt corresponding to the

target velocity be ∆2
t (ρ3v

2
t + ρ4). We let the entries of Qt corre-

sponding to the robot’s position be ∆2
t (ρ5ds + ρ6), and we let the

entries of Qt corresponding to the robot’s orientation be∆2
t (ρ7ds+

ρ8). This noise distribution is overly simplistic and ignores many
factors, but it is sufficient for the experiments reported upon in this
paper. In total, there are nine free parameters (η, ρ1, ρ2, . . . , ρ8)
thatmust be determined through hand tuning or calibration. In our
simulation we find the optimal parameters using gradient decent.

3.6. Update algorithm

Given all the preliminaries specified in the previous sections,
the update algorithm is just the standard extended Kalman filter,
with modification to handle cases where the color region tracker
fails due to occlusions or the target leaves the field of view. When
no sensor measurement zt is available, we simply predict the
system state and allow diffusion of the state covariance without
sensor measurement correction. When we do have a sensor
measurement but the estimated state is far from the predicted
state, we reset the filter, using the existing robot position and
orientation but fixing the relative target state to that predicted
by hinv(zt) and fixing the elements of P by propagating the sensor
measurement error for zt through hinv(zt) as previously explained
in Section 3.5. Here is the modified EKF algorithm:

1. Input z0.
2. Calculate x̂0 and P0.
3. For t = 1, . . . , T , do

(a) Predict x̂−t = f(x̂t−1,ut−1).
(b) Calculate Jft and Qt .
(c) Predict P−t = JftPt−1JT

ft + Qt .
(d) If zt is unavailable

i. Let x̂t = x̂−t .
ii. Let Pt = P−t

(e) otherwise
i. Calculate Jht , St , and Kalman gain
Kt = P−t J

T
ht (JhtP

−

t J
T
ht + St)

−1.

ii. Estimate x̂t = x̂−t + Kt(zt − ht(x̂−t )).
iii. Update the error estimate Pt = (I− KtJht )P

−

t .
(f) If ∥x̂t − x̂−t ∥ > σ , reset the filter.

4. Visual tracking and redetection

In this section, we briefly outline the visual tracking and detec-
tion algorithms before providing details. Although any tracker that
returns a 2D bounding box for the target object could be used, in
the experiments reported in this paper, we use CAMSHIFT, which
is based on the principle of color histogram backprojection. The
idea is to build a color histogram from an initial image I0, then,
on each successive frame, to calculate, for each pixel in the image,
the probability of that pixel’s color according to the histogram. Ob-
taining these probabilities is called backprojection. Backprojection
here should not be confused with the notion from projective ge-
ometry of backprojecting a 2D image point to obtain 3D ray.

1. Initialize CAMSHIFT with initial image I0 and
bounding box (xc, yc, w, h).

2. Continue CAMSHIFT tracking, updating adaptive
histogram threshold.

3. Suspend tracking when similarity between region
returned by the tracker and appearance model is too
low.

4. Run redetection.
5. Suspend redetection when candidate target most

similar to the appearance model is similar enough
and large enough.

6. Run CAMSHIFT to confirm redetected region. If
confirmed, reinitialize; otherwise, return to
redetection.

4.1. Initialization and CAMSHIFT tracking

On the first frame I0, we expect the user to provide the
target object’s position and size in the form of a bounding box
(xc0, y

c
0, w, h). In our implementation, in operation, the user selects

the initial bounding box with a mouse.
Although our methods are compatible with any fast feature

histogram-based image region tracker, in our experiments, we use
CAMSHIFT [34]. CAMSHIFT combines traditional mean shift with
an adaptive region sizing step. Given an initial position of the



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 7
detection window in frame t − 1, for frame t , it computes a back-
projection of the appearance model onto the image and then esti-
mates the center of mass of the backprojection among the pixels
in a region of interest slightly expanded from the detection win-
dow from time t − 1. The method then shifts the detection win-
dow to the calculated center of mass and repeats the estimation
and shifting process until convergence. Finally, themomentsM·· of
the backprojection in the region of interest are calculated and used
to set the size of the detection window for frame It as follows [43].

xc =
M10

M00
, yc =

M01

M00
, r =

M20/x2c
M02/y2c

,

w =

2M00 · r, h =


2M00/r.

On each frame, if CAMSHIFT returns a reasonable bounding box,
the parameters of the adaptive suspension threshold are updated.
The bounding box check and threshold calculation are described in
the next section.

4.2. Suspending tracking

CAMSHIFT works extremely well so long as the target
appearance remains consistent and distinctive with respect to the
background. However, when the target object leaves the scene, is
occluded, or impinges a background region with a similar color
distribution, the tracking region tends to change rapidly in size,
growing into background regions or moving to a different location
completely.When this happens during a target pursuit application,
lest the pursuit motion planner becomes confused, it is important
to suspend tracking and attempt to redetect the target object.

To achieve this, as a firstmeasure,we impose simple constraints
on the target detection window’s location and size. If the
target object’s estimated size or location changes by an amount
inconsistent with robot and target dynamics, clearly, the tracker
is lost and needs to be reinitialized.

However, such simple location and size constraints are not
sufficient. We find that in cluttered scenes, when the target is
partially or wholly occluded or leaves the scene, CAMSHIFT tends
to get distracted by background regions, oftentimes without a
sufficiently large change in position or size to flag suspension.

We therefore, before committing to CAMSHIFT’s estimate of the
target at time t , verify the quality of the candidate detection region
using an adaptive threshold applied to the dissimilarity between
the candidate region’s color histogram hr

t and the appearance
model hm. We use the default OpenCV histogram comparison
function [44], which returns a distance based on the Bhattacharyya
coefficient

dt ≡ d(hr
t ,h

m) =


1−


i


hr
t (i) · hm(i). (27)

(The implementation also normalizes the histograms to sum to 1.)
The resulting distance varies between 0, for identical histograms,
to 1, for non-overlapping histograms.

The histogram comparison threshold that we apply to dt is
computed adaptively. We keep running estimates of the distance
measure’s mean and standard deviation

µn = µn−1 +
dt − µn−1

n
,

σn =


(n− 2)σ 2

n−1 + (dt − µn−1)(dt − µn)

t − 1
, (28)

and then, for t > 1, we suspend tracking when we obtain a new
distance that deviates too far from the running mean, i.e., when

dt > µn + θσn.
Algorithm 1 Target Tracking: track target object, suspend
tracking, and call redetection algorithm when target is not clear.

Input: (b0 ← (xc0, y
c
0, h

img
0 , w

img
0 ), I0)

1: Hm
← CalcHist(I0, b0)

2: t ← 1
3: n← 0
4: TargetAcquired← true
5: βt ← 0
6: while (It = read frame from IO) do
7: if TargetAcquired then
8: [bt , dt ] ← Track(It , Hm, bt−1)
9: else

10: [bt , dt ] ← ReDetect(It , Hm, βt−1, bt−1)
11: end if
12: if (n = 0) then
13: n← 1
14: µn ← dt
15: σn ← 0
16: βt ← µn
17: else if (n = 1) then
18: n← 2
19: update µn and σn
20: βt ← µn + θσn
21: else
22: βt ← µn + θσn

23: if (dt ≤ βt) And (himg
t > himg

t−1 × 0.5) then
24: n← n+ 1
25: update µn and σn
26: TargetAcquired← true
27: else
28: bt ← bt−1
29: TargetAcquired← false
30: end if
31: end if
32: t ← t + 1
33: end while

Algorithm 2 Track: target tracking function.
1: function Track(I, Hm, b)
2: P← BackProject(I, Hm)
3: b← CamShift(P, b)
4: Hr

← CalcHist(I, b)
5: d← CompareHist(Hr , Hm)
6: return b, d
7: end function

θ is a threshold on the z-score of the newly measured distance.
We use θ = 3 in our experiments. Algorithm 1 provides a formal
definition of the algorithm.

4.3. Target redetection

While tracking is suspended, on every frame, we need to
execute the target redetection phase of the algorithm. The flow is
shown in the light blue box in Fig. 2, and an example of the result
of each step is shown in Fig. 4. We detail each step here.

4.3.1. Backproject the appearance model
The color histogram Hm gives us the probability P(It(x, y) |

target) of observing a pixel with color It(x, y) given that the pixel
is actually in the target region. Backprojection of the appearance
model Hm simply means that we generate a new image P such that
Pt(x, y) = P(It(x, y) | target) according to Hm. P will have in
general several clusters of pixels with high values, indicating some



8 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
Algorithm 3 Target Redetection: redetect candidate region and
reinitialize the target tracker.
1: function ReDetect(I, Hm, β, b)
2: P← BackProject(I, Hm)
3: M← Binarize(P)
4: R← Open(M)
5: C ← GenerateComponents(R)
◃ Filter out the smaller region 30% below the target size at t and
compare the similarity with the target object.

6: r← ExtractSimilarRegion(C, β, Hm, b)
7: if r ≠ Null then
8: r← CamShift(P, r)
9: Hr

← CalcHist(I, r)
10: d← CompareHist(Hr , Hm)
11: else
12: r← b
13: d← 1
14: end if
15: return r, d
16: end function

degree of consistency of the region with Hm. An example is shown
in Fig. 4(b).

4.3.2. Binarize likelihood image
In this step, to eliminate weak matches between It and the

appearancemodel, we thresholdP using the standardOtsumethod
to obtain a binary image M indicating candidate target pixels.

4.3.3. Generate connected components
In this step, we apply morphological erosion and dilation to M

to eliminate noise and fill gaps, then extract the connected compo-
nents. In our experiments, we use a square structuring element 3
pixels wide. An example is shown in Fig. 4(c).

4.3.4. Generate candidate regions
In this step, we eliminate any connected components with an

area less than 30% of the target object’s size in the last frame before
tracking was suspended, then we find the rectangular bounding
box of each surviving connected component. If no candidate
regions remain, we continue to the next frame. An example of
surviving bounding boxes is shown in Fig. 4(d) and overlaid on the
original image in Fig. 4(e).

4.3.5. Find most similar region
In this step, we obtain the color histogram of each region

surviving the previous step and compare with the appearance
model Hm using Eq. (27). If the smallest distance is below the
adaptive threshold calculated in the tracking phase, we reinitialize
CAMSHIFT using the corresponding best region. An example of
successful reinitialization is shown in Fig. 4(f). Pseudocode for the
visual tracking algorithm is shown in Algorithm 3.

5. Experimental setup

The main objective of the proposed method is to use the
pursuit robot’s sensors (monocular camera and wheel encoders)
to estimate a smooth, accurate trajectory for the target relative
to the pursuit robot. Our evaluation thus proceeds in two parts.
First, we evaluate the joint localization model, which combines
the visual tracker’s sensor measurements with wheel encoder
data and the kinematic model to generate a temporally smoothed
trajectory taking the pursuit robot’s kinematics into account. Then,
Fig. 4. Example target redetection steps. (a) Example image It containing the target.
(b) Backprojection Pt of appearance model. (c) Binarized and filtered versions of
Pt . (d) Bounding boxes of candidate regions after filtering out small connected
components. (e) Candidate regions from (d) overlaid on It . (f) Reinitialized
CAMSHIFT result. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

we evaluate the visual tracker, which provides an instantaneous
estimate of the target’s position relative to the pursuit robot.

For the joint localization algorithm, we performed experiments
under three conditions: (1) simulation, which allows detailed
analysis of the effects of different noise levels, (2) real world
indoor environments, which allow ground truth trajectories to
be carefully measured, and (3) real world outdoor environments,
which allow realistic, albeit qualitative, evaluation of the robot’s
and target’s estimated trajectories.

Experiment I briefly evaluates the method in simulation. The
pursuit robot moved at a constant speed of 1 m/s along a curved
trajectory, and the simulated target moved with a constant speed
of 1 m/s along a piecewise linear path of three segments. The sim-
ulation also included a period of time inwhich the robot and target
are traveling parallel to each other, with the target outside the pur-
suer’s camera’s field of view. During these times, no sensor mea-
surements are observed (see Fig. 5(a)). We hypothesized that the
proposed method would perform better than a simplistic smooth-
ing method when the pursuit robot’s odometry measurements are
accurate and worse than the simple smoothing method when the
pursuit robot’s odometry measurements are extremely noisy. To
test this hypothesis, we varied the simulated pursuit robot’s odom-
etry noise from 0 (perfect odometry) to 108% of the distance trav-
eled and observed our algorithm’s resulting estimation error.

To test the performance of the proposed method in the real
world, in Experiment II, the pursuit robot moved to follow a
human target performing arbitrary simple and complex (curved)
movements. The tests were in an indoor environment to obtain
detailed quantitative performance measurements under realistic
visual tracking noise. We pre-calibrated the camera’s intrinsic
parameters, measured and marked the floor in order to accurately
measure ground truth trajectories of the robot and target, then
recorded video while the target and pursuer were standing still
then moving simultaneously. The target’s motion followed a curve



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 9
Fig. 5. Experiment I results. (a) Absolute paths from one sample run. Pursuer (left) and target (right) moved along the black curves. Odometry noise and sensor noise
were fixed throughout the experiment. Blue path and blue points show robot path and target locations estimated from raw odometry and sensor data without filtering.
Green path and green points show robot path and target locations estimated from raw odometry and sensor correction. Red path and red points show robot path and target
locations estimated with model-based filtering algorithm of Section 3. Thick lines delimited by filled squares denote the period of time in which the target was outside the
pursuer’s camera’s field of view. Red open squares show target positions estimated from raw sensor measurements without any filtering. The filter is able to smooth the
noisy target positions, but absolute position estimates are biased due to accumulation of odometry error. (b)We repeated the scenario shown in part (a) with different levels
of odometry noise and measured the average relative target position error for the three estimation methods. Error bars denote 95% confidence intervals. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
with left and right motion, whereas the pursuer veered off to the
left because of wheel slippage but kept the target in view. The
sensor measurements always came from the actual visual tracking
algorithm tested in Experiments IV and V. As in Experiment I, we
compare the error in the robot-relative positions of the target over
each runwith either raw sensormeasurements, simple smoothing,
or the proposed method. For further comparison, we also examine
the trajectories of the pursuer and target according to the ground
truth and estimates.

In Experiment III, we performed a more realistic, albeit qualita-
tive, evaluation in which we teleoperated the pursuit robot to fol-
low a human target moving along arbitrary curved trajectories in
an outdoor environment. Due to the difficulty in obtaining ground
truth data in the outdoor case, we simply visually compare the sta-
bility and smoothness of the relative trajectories of the proposed
method in comparison to the two baseline methods.

Finally, for the visual tracker, we collected visual data in both
simple and complex outdoor environments using video fromhand-
held cameras. To extensively test the method’s ability to recover
fromocclusion of the target, we included a video sequence by Klein
et al. [45]. See Fig. 9(b). The target was always a human who in
every video either moved out of the camera’s field of view or was
occluded one or more times. In some cases the camera rotated to
reacquire the target, and in others, the target moved back into the
field of view. All four sceneswere scenes inwhich the visual tracker
is mostly successful at tracking so long as the target is clearly
visible in the scene. All four videos were acquired at 30 fps. Two
videos, ‘‘b’’ and ‘‘c’’, were acquired at 320×240,whereas videos ‘‘a’’
and ‘‘d’’ were acquired at 640×480. Experiment IV tests the visual
tracker’s accuracy over these video sequences, and Experiment V
tests its runtime performance. The low resolution videos were left
out of the runtime performance evaluation in Experiment V.

6. Results and discussion

In this section, we first provide a detailed description of the
baseline methods for comparison, and then we provide detailed
results and analysis for each of the five experiments outlined in
the previous section.

We define two baseline methods as points of comparison with
the proposed joint state estimation method. The first baseline
method does not use any filter while tracking the target [34,35];
the sensor-based relative target position estimate is simply ac-
cepted. Hence it is named ‘‘Localization with no filter correction’’.
The second baseline uses sensormeasurement correction based on
an ordinary extended Kalman filter [46] to smooth the target’s es-
timated trajectory in the pursuer robot’s coordinate system. This
baseline is named ‘‘Localization with sensor correction’’. We do
not explicitly incorporate the pursuer’s odometry measurements
either jointly or separately in the baseline methods. The proposed
method, however, jointly corrects the pursuer’s odometrywith the
sensormeasurement to produce better performance. The proposed
joint localization method integrates the target and robot pose in a
joint state space model, as explained in Section 3.

6.1. Experiment I: Simulation

We tested the joint localization algorithm in simulation as
previously described. Example estimated absolute trajectories for
the robot and target with sensor noise 20% and odometry noise
9% under the three models are shown in Fig. 5(a). The estimated
absolute paths of the robot and target contain error accumulated
over the entire run, but in target pursuit, the target’s position
relative to the pursuer is much more important than the absolute
position, so in the remaining results, we analyze, over time, the
error in the target’s estimated position relative to the robot.

To prove the efficacy of joint localization coupling target dy-
namics and pursuit robot kinematics in improving localization, we
simulated the robot’s odometry measurements with varying noise
levels. For each noise level, we repeated the experiment 10 times,
with the same setup, the same robot and target trajectories, and the
same motion model parameters, but we obtained different sam-
ples from the sensor and odometry noise distributions. For each
noise level, we first generated one synthetic simulation data se-
quence, optimized themotionmodel, then ran the 10 separate sim-
ulations using the same set of motion model parameters. Fig. 5(b)
shows the average relative target position error as a function of
odometry error level. As expected, sensor-only estimation and the
reduced model show no sensitivity to odometry error level, but
our method is indeed sensitive to the odometry error level. How-
ever, for the reasonable range of odometry error (30% or less), our
method still substantially outperforms sensor-only estimation and
modestly outperforms the reduced model.

During the simulations, on each iteration of localization, we
computed the RMSE between the estimated and ground truth tar-
get positions in the robot coordinate frame, using each of the three
methods. We also suspended relative target localization when the
visual tracker suspended target tracking. In these cases, we wait
for the detector to redetect the target and reinitialize the visual



10 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
Fig. 6. Experiment I results, continued. The proposed method is compared to the two baseline methods in simulation with 9% odometry and 15% sensor error. (a) Relative
position estimation error over time for one representative run. (b) Average relative error over the full run shown in (a). Error bars denote 95% confidence intervals. Joint
localization is 58.8% and 26.3% better than the baseline methods.
tracker, then we reinitialize localization. See Fig. 6(a) for results of
a sample runwith 9% odometry error and 15% visual tracker sensor
error. We performed statistical tests on the RMSE of each method
over this run. See Fig. 6(b). The proposedmethod significantly out-
performed both baseline methods by 58.8% and 26.3%.

We conclude that the proposed method provides more stable
and smooth estimates of the target’s relative trajectory than do the
baseline methods.

6.2. Experiment II: Real world, indoors

We recorded ground truth measurements, odometry data, and
camera images while teleoperating the pursuit robot to follow a
human target indoors. Since our goal was to evaluate the extent to
which target tracking improves relative position error, we selected
an arbitrary run in which the target remained in the field of view.
Fig. 7(a) and (b) show the robot and target trajectories in the x–y
plane. Fig. 7(c) shows the relative target position error at each point
in the run for the same three algorithms tested in Experiment III,
and Fig. 7(d) shows the average (RMSE) relative position error of
the three state estimation methods over the entire run. Fig. 7(e)
shows sample results of visual tracking.

The pursuer and target initially remained still. We recorded
the initial position of the pursuer as (0, 0, 0) in the world coor-
dinate system and measured the target’s initial true position as
(470, 0, 80) cm. Then the target moved away from the pursuer,
veering left and right, and we teleoperated the pursuer to follow.
Due to wheel slippage, the pursuer veered diagonally in the+y di-
rection but kept the target in view. Resulting estimated trajectories
are compared to the ground truth in Fig. 7(a) and (b). As expected,
thetarget was easily tracked by all of the filtering methods while
both target and pursuer were still. During target and pursuer mo-
tion, however it is clear from the data that filtering is much bet-
ter than the very noisy raw data, and joint localization provides
smoother and more stable estimates than the baseline methods.

The results show that both joint localization and localization
with sensor correction consistently outperform localization with
no filter correction. On average, the proposed joint localization
estimates are 40.5% better than localizationwith no filter and 27.6%
better than localizationwith sensor correction. To test whether the
difference between joint localization and localization with sensor
correction is significant, we performed a t-test on difference in
the sample means and found a significant difference (t = −5.16,
p < 0.001).

In Fig. 7(c), at t = 25 there is a spike in the relative distance
error. This is due to noise in the visual tracker, which reported a
change in the height of the target in the image, causing a change in
the estimated distance to the target from the robot. Near t = 150
there is a point at which the pursuer takes an arc motion to the
left while the target moves on a complex trajectory. Here we
observe another increase in the noise in the sensor measurements.
The raw sensor measurement based estimate is extremely noisy
at this point, whereas the proposed localization model shows a
more smooth and less noisy trajectory compared to the other two
methods.

6.3. Experiment III: Real world, outdoors

Aspreviously explained, due to thedifficulty in obtainingmetric
ground truth data in an outdoor environment, we only perform
a qualitative evaluation of the method’s ability in the outdoor
environment. In Fig. 8, we show the resulting estimated position
of the target in the world coordinate frame over an arbitrary run in
which the target was always in the field of view. The target moved
away from the robot, describing a complex trajectory. When
needed, we transform the estimated pursuer-relative position of
the target into the world coordinate frame using the assumption
that the pursuit robot began at position (0, 0, zr , 0, 0, 0) in the
world coordinate frame,where zr is the vertical offset of the robot’s
center from the ground, and the target began at its first raw sensor-
based estimated position relative to the robot.

The results show clearly that the proposed method provides
less noisy, more smooth, and more stable estimates of the target’s
trajectory than do the other two methods.

Spikes and abrupt changes in the estimated trajectories can be
observed after t = 140, especially evident after t = 150. At
this time, the robot was performing a somewhat complex mo-
tion, a sudden arcing motion in a counter clockwise direction. At
this point the bounding box received from the visual tracker be-
comes very noisy, and combined with the jerky motion of the pur-
suit robot, we obtain noisy target position estimates from the raw
sensor measurements. However, the proposed method estimates
a smoother trajectory compared to the baseline methods. The re-
sults could be further improved if we used a method to remove
extremely noisy sensor measurements; we could then in principle
obtain smooth trajectories like those before t = 140 in Fig. 8.

6.4. Experiment IV: Visual tracking accuracy

In the first frame of each video (R1 in Fig. 9), we initialized
CAMSHIFT tracking by selecting the human target in the scene.
We then ran the proposed tracking, suspension, and redetection
method to the end of each video.

During tracking, we incrementally updated the mean µt and
standard deviation σt of the distance dt between the appearance
modelHm and the tracked target’s color histogramHr

t . In almost all
cases, when the target left the scene, the distance dt exceeded the



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 11
Fig. 7. Experiment II results. Real world data, indoor environment, with ground truth. (a) Top view of pursuer’s ground truth and estimated trajectory during the experiment.
Initial position was assumed to be (0, 0, 0) in the world frame. (b) Top view of target’s ground truth and estimated trajectory. Initial position was measured to be
(470, 0, 80) cm in theworld frame. (c) Relative position estimation error over time. (d) Average relative error over the full run shown in (c). Error bars denote 95% confidence
intervals. Joint localization is 40.5% better than localization with no filter and 27.6% better than localization with sensor correction. (e) Sample visual target tracking results.
adaptive threshold, except for a few cases in which the redetection
algorithm found a sufficiently similar object in the background.

Rows R2 and R3 in Fig. 9 show example images acquired when
the target was absent from the camera field of view. At this point
in each video, CAMSHIFT tracking is suspended and the redetection
algorithm is running, correctly reporting the absence the target in
the field of view.

Rows R4 and R5 in Fig. 9 show example images acquired after
the target has returned to the field of view. The proposed method
eventually successfully identifies the candidate region among the
possible candidates. In the figure, the selected region is surrounded
by a red rectangle.

In each case, CAMSHIFT is correctly reinitialized, as shown in
row R6 of Fig. 9.
Over the four videos, the target was successfully tracked in
95.12% of the total frames, the target was missed in 1.99% of the
total frames, and a false target was detected and tracked in 4.67%
of the total frames. The accuracy results on a per-video basis are
summarized in Table 1. The video data sequences are available at
the first author’s website [47].

6.5. Experiment V: Visual tracking run time performance

We tested the runtime performance of the visual tracker on
two different hardware configurations, a 2.26 GHz Intel Core i3
laptop running 32-bit Ubuntu Linux 11.10 and a 1.6 GHz Intel
Atom N280 single core netbook running 32-bit Lubuntu 11.10. We
measured the average time required for tracking (the standard



12 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
Fig. 8. Experiment III results. Estimated positions (xt , yt , zt ) of the target in the pursuer coordinate systemover time in one run of the outdoor environment. In our coordinate
system, x is forward, y is left–right, and z is up–down.
Fig. 9. Experiment IV results. The proposedmethod was tested in different outdoor environments with different background and target objects. Each column shows images
from a different video. Rows show results of each step of processing. Blue colored rows show processing when the target is not in the scene. Yellow colored rows show the
same processing steps when the target returns to the scene. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)



A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14 13
Table 1
Experiment IV results. For each video, we report the number of frames in which the target is visible and occluded or outside the field of view, whether multiple targets are
visible, as well as the number of hits, misses, and false detections for objects other than the actual target.

Video Frames w. target Multiple objects Detection ratio
Present Occluded/Absent Hit Miss False

a 637 35 No 597 (88.84%) 3 (0.45%) 78 (11.61%)
b 997 20 Yes 1005 (98.82%) 0 (0.0%) 12 (1.18%)
c 389 50 No 425 (96.81%) 7 (1.59%) 21 (4.78%)
d 426 174 No 584 (97.33%) 6 (1%) 22 (3.67%)

Online dataset

e 947 0 No 909 (95.9%) 18 (1.9%) 20 (2.12%)
f 305 0 No 278 (91.15%) 0 (0%) 27 (8.85%)
g 453 45 Yes 439 (96.91%) 9 (1.99%) 5 (1.1%)
Table 2
Experiment V results. Runtime performance of tracking and redetection algorithms
on two different processors.

Tracking Redetection
Core i3 Atom N280 Core i3 Atom N280

16.340 ms 49.234 ms 41.455 ms 91.232 ms

CAMSHIFT routine plus histogram distance measurement and
adaptive threshold update) and target redetection over all relevant
frames in the three high resolution test videos.

The results are summarized in Table 2. Both algorithms run at
high frame rates, with the worst case of just over 10 fps for rede-
tection on the Atom processor. The method is clearly feasible for
on-board execution by a mobile robot with modest computational
resources.

As discussed in Section 1.3, there are many alternatives for
tracking besides CAMSHIFT. Many of them would potentially pro-
vide better person detection accuracy and tracking performance
while the target is in the field of view. Indeed, these methods
would be complementary to our approach—as already explained,
any method that provides a noisy 2D bounding box for the tar-
get could be used with our localization method without any other
changes. Although to the best of our knowledge, none of the state of
the art detection and tracking methods are sufficiently fast to run
in real time on commodity embedded systems hardware, this will
certainly change in the future, leading to the idea for futurework of
combining person detection and tracking usingHOGor other state-
of-the-art methods with color-based or texture-based appearance
modeling.

7. Conclusion

In this paper, we propose a joint localization method for pur-
suit SUGVs that integrates target dynamics and pursuit robot kine-
matics in a joint state space model. We show that predicting and
correcting pursuer and target trajectories simultaneously produces
better results than standard approaches to estimating relative tar-
get trajectories in a camera-centered or robot-centered coordi-
nate system.We show that joint localization producesmore stable,
smooth, and noise-resistant trajectories than those produced by
standard filters or a systemwithout any filter. The joint localization
filter performs well even when there are sudden changes in the
sensor measurement indicating an erroneous detection or a rapid
change of the target object’s position.

We also propose a computationally fast visual tracker for pur-
suit robots.We propose an adaptive histogram similarity threshold
used to suspend the visual tracker when the target is occluded or
leaves the field of view. We find that visual trackers need proper
reinitialization when the target reappears in the camera’s field of
view. To accomplish this, we introduce a fast redetection algorithm
based on histogram backprojection that searches for the target
over the entire image in real time. Experiments IV and V demon-
strate that the visual tracker is robust and sufficiently fast to run on
embedded systemswithmodest resources typical ofmobile robots.

We believe that up till now, research on target pursuit applica-
tions has been far from the point of commercial exploitation, due
in large part to the high cost and bulk of the 3D sensors necessary.
The developments reported upon in this paper dramatically reduce
the sensory apparatus necessary for efficient and effective target
pursuit, replacing the complex sensors with a single monocular
camera, thus bringing the concept closer to the point of practical
implementation in commercial products.

Although we have demonstrated that the proposed method is
appropriate for joint localization of a moving pursuer and target, it
would be insufficient for target tracking scenarios in which accu-
rate global localization of the pursuer is required. Global localiza-
tion is the province of SLAM, inwhichwemaintain a joint posterior
over stationary landmark states and the moving robot. However,
the two approaches are complementary—moving target landmarks
could easily be integrated with most SLAM methods (especially
those based on EKFs). The proposed sensor and system state evo-
lution models could be used directly in nearly any probabilistic
SLAM algorithm. The target observation would provide additional
constraints on the pursuer’s state estimate, possibly improving its
global localization accuracy, and the static landmark observations,
by further constraining the pursuer’s state estimate, would in turn
improve the target’s global localization accuracy.

In future work, first, we plan to remove the limitation of a fixed
real-world target height, by automatically estimating the height of
the target object by tracking it over time. Second, we will integrate
the method with a complete processing stream including path
planning and obstacle avoidance.

Acknowledgments

This research was supported by a Royal Thai Government re-
search grant to MND and PL. AB was supported by graduate fel-
lowships from the University of Balochistan, the Higher Education
Commission of Pakistan, and the Asian Institute of Technology.We
are grateful for the support of Sergio Goncalves and Phongsathorn
Eakamongul, who assisted with robot hardware and control soft-
ware.

References

[1] G.R. Gerhart, C.M. Shoemaker, D.W. Gage, PackBot: a versatile platform for
military robotics, in: Unmanned Ground Vehicle Technology VI, 2004.

[2] N. Irimie, A. Zorila, A. Nan, P. Schiopu, Remote control of a small
unmanned ground vehicle (SUGV), in: Proc. SPIE 7821, Advanced Topics in
Optoelectronics, Microelectronics, and Nanotechnologies, 2010.

[3] J.J. Carafano, A. Gudgel, The pentagon’s robots: Arming the future, Heritage
Found. Backgr. 2096 (2007) 1–6.

[4] M. Kobilarov, G. Sukhatme, J. Hyams, P. Batavia, People tracking and following
with mobile robot using an omnidirectional camera and a laser, in: IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2006,
pp. 557–562.

http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref3
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref4


14 A. Basit et al. / Robotics and Autonomous Systems 74 (2015) 1–14
[5] M. Awai, T. Shimizu, T. Kaneko, A. Yamashita, H. Asama, HOG-based person
following and autonomous returning using generated map by mobile robot
equipped with camera and laser range finder, in: Intelligent Autonomous
Systems 12. Vol. 194, Springer, Berlin, Heidelberg, 2013, pp. 51–60.

[6] A. Ohshima, S. Yuta, Tracking and following people and robots in crowded
environment by a mobile robot with SOKUIKI sensor, in: Distributed
Autonomous Robotic Systems 8, Springer, 2009, pp. 575–584.

[7] Y. Sung, W. Chung, Human tracking of a mobile robot with an onboard LRF
(Laser Range Finder) using human walking motion analysis, in: International
Conference onUbiquitous Robots and Ambient Intelligence (URAI), IEEE, 2011,
pp. 366–370.

[8] T. Yoshimi, M. Nishiyama, T. Sonoura, H. Nakamoto, S. Tokura, H. Sato,
F. Ozaki, N. Matsuhira, H. Mizoguchi, Development of a person following robot
with vision based target detection, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2006, pp. 5286–5291.

[9] Z. Chen, S.T. Birchfield, Person following with a mobile robot using binocular
feature-based tracking, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2007, pp. 815–820.

[10] W. Choi, C. Pantofaru, S. Savarese, Detecting and tracking people using an RGB-
D camera via multiple detector fusion, in: IEEE International Conference on
Computer Vision Workshops (ICCV), IEEE, 2011, pp. 1076–1083.

[11] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that
provably converges, in: Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IJCAI, IJCAI, Acapulco, Mexico, 2003.

[12] A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse, Monoslam: Real-time single
camera SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (6) (2007) 1052–1067.

[13] J. Lou, H. Yang,W.M. Hu, T. Tan, Visual vehicle tracking using an improved EKF,
in: Asian Conference of Computer Vision, ACCV, 2002, pp. 296–301.

[14] M. Pupilli, A. Calway, Real-time camera tracking using a particle filter, in:
British Machine Vision Conference, 2005.

[15] F. Shimin, G. Qing, X. Sheng, T. Fang, Human tracking based on mean shift
and Kalman filter, in: International Conference on Artificial Intelligence and
Computational Intelligence, AICI, Vol. 3, 2009, pp. 518–522.

[16] N. Funk, A study of the kalman filter applied to visual tracking, University of
Alberta, Project for CMPUT 652.

[17] V. Karavasilis, C. Nikou, A. Likas, Visual tracking by adaptive kalman filtering
and mean shift, in: Artificial Intelligence: Theories, Models and Applications,
Springer, 2010, pp. 153–162.

[18] D. Lowe, Object recognition from local scale-invariant features, in: The
Proceedings of the Seventh IEEE International Conference on Computer Vision,
1999. Vol. 2, 1999, pp. 1150–1157.

[19] H. Bay, T. Tuytelaars, L. Gool, Surf: Speeded up robust features, in: Computer
Vision—ECCV 2006, Vol. 3951, Springer, Berlin, Heidelberg, 2006, pp. 404–417.

[20] M. Yokoyama, T. Poggio, A contour-based moving object detection and
tracking, in: Visual Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005, pp. 271–276.

[21] M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: Binary robust independent
elementary features, in: Computer Vision—ECCV 2010, Springer, 2010,
pp. 778–792.

[22] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: an efficient alternative to
sift or surf, in: IEEE International Conference on Computer Vision (ICCV), IEEE,
2011, pp. 2564–2571.

[23] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR). Vol. 1, IEEE, 2005, pp. 886–893.

[24] M. Munaro, F. Basso, E. Menegatti, Tracking people within groups with RGB-D
data, in: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, 2012, pp. 2101–2107.

[25] H. Zhou, Y. Yuan, C. Shi, Object tracking using sift features and mean shift,
Comput. Vis. Image Underst. 113 (3) (2009) 345–352.

[26] D.-N. Ta, W.-C. Chen, N. Gelfand, K. Pulli, SURFTrac: Efficient tracking
and continuous object recognition using local feature descriptors, in: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, 2009,
pp. 2937–2944.

[27] S. Denman, V. Chandran, S. Sridharan, An adaptive optical flow technique for
person tracking systems, Pattern Recognit. Lett. 28 (10) (2007) 1232–1239.

[28] W. Zajdel, Z. Zivkovic, B. Krose, Keeping track of humans: Have i seen this
person before?, in: IEEE International Conference onRobotics andAutomation,
ICRA, 2005, pp. 2081–2086.

[29] F. Porikli, Integral histogram: a fast way to extract histograms in Cartesian
spaces, in: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR, Vol. 1, 2005, pp. 829–836.

[30] S. Perreault, P. Hebert, Median filtering in constant time, IEEE Trans. Image
Process. 16 (9) (2007) 2389–2394.

[31] M. Sizintsev, K. Derpanis, A. Hogue, Histogram-based search: A comparative
study, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2008, pp. 1–8.

[32] X. Chen, H. Huang, H. Zheng, C. Li, Adaptive bandwidth mean shift object
detection, in: IEEE Conference on Robotics, Automation and Mechatronics,
2008, pp. 210–215.

[33] X. Chen, Q. Huang, P. Hu, M. Li, Y. Tian, C. Li, Rapid and precise object detection
based on color histograms and adaptive bandwidth mean shift, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, 2009,
pp. 4281–4286.

[34] G. Bradski, Real time face and object tracking as a component of a perceptual
user interface, in: IEEE Worksop on Applications of Computer Vision, WACV,
1998, pp. 214–219.
[35] J.G. Allen, R.Y.D. Xu, J.S. Jin, Object tracking using camshift algorithm and
multiple quantized feature spaces, in: Pan-Sydney Area Workshop on Visual
Information Processing, Vol. 36, 2004, pp. 3–7.

[36] D. Comaniciu, V. Ramesh, P.Meer, Real-time tracking of non-rigid objects using
mean shift, in: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, Vol. 2, 2000, pp. 142–149.

[37] D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking, IEEE Trans.
Pattern Anal. Mach. Intell. 25 (5) (2003) 564–577.

[38] S.M. LaValle, PlanningAlgorithms, CambridgeUniversity Press, Cambridge, UK,
2006, Available at http://planning.cs.uiuc.edu/.

[39] M. Nitulescu, Theoretical aspects in wheeled mobile robot control, in:
Automation, Quality and Testing Robotics, Vol. 2, 2008, pp. 331–336.

[40] A. Basit, M.N. Dailey, P. Laksanacharoen, Model driven state estimation for
target pursuit, in: IEEE International Conference on Control, Automation,
Robotics & Vision, ICARCV, 2012, pp. 1077–1082.

[41] A. Basit,M.N. Dailey, P. Lakanacharoen, J.Moonrinta, Fast target redetection for
CAMSHIFT using back-projection and histogram matching, in: International
Conference on Computer Vision Theory and Applications, VISAPP, 2014.

[42] A. Basit, W.S. Qureshi, M.N. Dailey, K. Tomáš, Joint localization of pursuit
quadcopters and target using monocular cues, J. Intell. Robot. Syst. 78 (3–4)
(2015) 613–630.

[43] Exner, Bruns, Kurz, Grundhöfer, Bimber, Fast and robust CAMShift tracking, in:
IEEE InternationalWorkshop on Computer Vision for Computer Games, CVCG,
2010. URL: http://www.jku.at/cg/content/e48345/.

[44] G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV
Library, OŔeilly Media, Inc., 2008.

[45] D.A. Klein, D. Schulz, S. Frintrop, A.B. Cremers, Adaptive real-time video-
tracking for arbitrary objects, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, 2010, pp. 772–777.

[46] D. Comaniciu, V. Ramesh,Mean shift and optimal prediction for efficient object
tracking, in: International Conference on Image Processing, ICIP, Vol. 3, 2000,
pp. 70–73.

[47] A. Basit, Test video sequences, 2014. URL: http://www.cs.ait.ac.th/abasit/
research_data.html.

Abdul Basit received the B.S. in Computer Science from
Shaheed Zulfikar Ali Bhutto Institute of Science and
Technology (SZABIST), Karachi, Pakistan, in 2005. He
received the M.Sc. degree in Computer Science from the
Asian Institute of Technology (AIT), Thailand, in 2010. He
is currently a Ph.D. candidate in Computer Science at AIT
and a Lecturer at the University of Balochistan (UoB).
His research interests lie in machine vision for control,
automation, and robotics.

Matthew N. Dailey received the B.S. and M.S. in Com-
puter Science from North Carolina State University and
the Ph.D. in Computer Science and Cognitive Science from
the University of California, San Diego. He spent two years
as a Research Scientist with Vision Robotics Corporation
of San Diego, CA USA and two years as a Lecturer in the
Computer Science and Information Technology programs
at Sirindhorn International Institute of Technology, Tham-
masat University, Thailand. In 2006, he joined the Com-
puter Science and Information Management Department
at the Asian Institute of Technology, Thailand, where he is

now an Associate Professor. His research interests lie in machine learning, machine
vision, robotics, systems security, and high performance computing.

Jednipat Moonrinta received the B.Eng. in Computer En-
gineering from Chiang Mai University, Thailand, in 2008
and the M.Eng. in Computer Science from the Asian Insti-
tute of Technology, Thailand, in 2010. In 2010, he joined
the Computer Science and Information Management
research center at the Asian Institute of Technology, Thai-
land, where he is a Research Associate. His research inter-
ests are in machine vision, robotics, image processing, and
machine learning.

Pudit Laksanacharoen received the B.Eng. in Mechanical
Engineering from King Mongkut’s University of Technol-
ogy Thonburi, Thailand and theM.S. and Ph.D. in Mechani-
cal Engineering from Case Western Reserve University in
Cleveland OH, USA in 2001. He is now an Associate
Professor in Mechanical and Aerospace Engineering at
King Mongkut’s University of Technology North Bangkok,
Thailand. In 2004, he was a Visiting Researcher at the
Hirose-Fukushima Robotics Lab at the Tokyo Institute of
Technology, Japan. His research interests are in biologi-
cally inspired robots, creative mechanical design, and re-

habitation robots.

http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref5
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref6
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref7
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref8
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref9
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref10
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref12
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref17
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref19
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref21
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref22
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref23
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref25
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref27
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref30
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref37
http://planning.cs.uiuc.edu/
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref42
http://www.jku.at/cg/content/e48345/
http://refhub.elsevier.com/S0921-8890(15)00126-8/sbref44
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html
http://www.cs.ait.ac.th/abasit/research_data.html

	Joint localization and target tracking with a monocular camera
	Introduction
	Target pursuit
	Localization
	2D object tracking
	Contributions

	Algorithm design
	Joint estimation of robot and target state
	System state
	State transition
	Pursuit robot motion
	Target motion
	Linearization

	Sensor model
	Initialization
	Noise parameters
	Update algorithm

	Visual tracking and redetection
	Initialization and CAMSHIFT tracking
	Suspending tracking
	Target redetection
	Backproject the appearance model
	Binarize likelihood image
	Generate connected components
	Generate candidate regions
	Find most similar region


	Experimental setup
	Results and discussion
	Experiment I: Simulation
	Experiment II: Real world, indoors
	Experiment III: Real world, outdoors
	Experiment IV: Visual tracking accuracy
	Experiment V: Visual tracking run time performance

	Conclusion
	Acknowledgments
	References


