
Model Driven State Estimation for Target Pursuit
Abdul Basit

Computer Science and
Information Management

Asian Institute of Technology
Pathumthani, Thailand

Email: st107840@ait.ac.th

Matthew N. Dailey
Computer Science and

Information Management
Asian Institute of Technology

Pathumthani, Thailand
Email: mdailey@cs.ait.ac.th

Pudit Laksanacharoen
Mechanical Engineering

King Mongkut’s University of
Technology (North Bangkok)
Bangsue, Bangkok, Thailand

Email: stl@kmutnb.ac.th

Abstract—Autonomous target pursuit is an extremely useful
technology for surveillance applications. In this paper, we derive
and evaluate, in a realistic simulation, a novel tracking algorithm
for vision-based pursuit. We assume a simple ground-based
surveillance robot equipped with a single monocular camera.
For the sensor, we propose the use of a color histogram based
region tracker. We integrate models of the robot’s kinematics and
the target’s dynamics with a model of the color region tracking
sensor via an extended Kalman filter. Detailed simulation results
demonstrate that the tracking algorithm substantially reduces the
relative position estimation error introduced by noisy color region
tracking. The algorithm thus enables target pursuit based on an
extremely noisy but simple and low cost sensor.

I. INTRODUCTION

Video surveillance using an array of fixed camera sensors
is difficult due to the limited resolution and field of view of
each camera. The problem can be partly addressed through
the use of remotely operated pan-tilt-zoom cameras, but it is
still impossible to achieve complete coverage at high resolu-
tion throughout a given security zone. Surveillance cameras
on mobile platforms such as ground or airborne robots can
complement a stationary surveillance camera system, adding
increased range and precision of surveillance.

However, it is difficult for an operator to manually teleop-
erate robots, particularly when he or she would like to track
and follow a particular target of interest moving at a natural
or even evasive speed. As one solution to this problem, we are
exploring technology allowing a security operator to identify
a suspicious target in the video feed from a mobile robot then
command the robot to attempt to keep the target in view as it
moves through the environment, behind obstacles, and so on.

We call this problem autonomous target pursuit. In au-
tonomous target pursuit, besides obstacle modeling and naviga-
tion, one of the central problems is to use the camera to keep
track, over time, of the target relative to the pursuit robot’s
position as both are moving. Our interest is to use robots such
as the iRobot PackBot for autonomous pursuit. Here we focus
on systems like our own simple all-terrain surveillance robot
(see Fig. 1), which is equipped with teleoperation capabilities
and a single monocular camera.

Autonomous pursuit with a monocular camera sensor re-
quires us to track arbitrary objects. Researchers have proposed
several methods for arbitrary target object tracking. Objects
with well-defined edges can be tracked using contour based

Fig. 1. All-terrain robot for tracking and pursuit of arbitrary objects using a
monocular camera.

methods [1]. Feature based tracking methods extract reliable
features such as SURF [2] and SIFT [3] from the object
of interest and track them over time. These methods are
very robust but computationally intensive, so they require
approximation and/or hardware acceleration to achieve real
time performance.

In terms of speed and simplicity, the most important
category of object tracking methods is based on histogram
matching [4]. The most popular color histogram based methods
are probably mean shift [5], [6] and cam-shift [7]. Due to
these methods’ speed and simplicity, we propose their use for
tracking arbitrary objects during autonomous pursuit with a
single monocular camera. The main limitation of these meth-
ods, however, is that they are all extremely noisy, especially in
cluttered outdoor environments. While both robot egomotion
estimation and target tracking from fixed sensors are well-
understood problems, joint estimation of pursuer and target
trajectories in real time, using a monocular camera and color
histogram tracking as the sensor, is a challenging unsolved
problem.

Our approach is to perform rough global localization of
the pursuit robot and target in an obstacle map. For optimal
localization of the robot and target, one would use encoder-
based odemtry, visual odometry, landmark observations, all the
priori knowledge of the target and a model of the target’s
trajectory, but it would be extremely difficult to incorporate
all of this knowledge in a real time tracking algorithm.

In this paper we therefore derive and evaluate, in a realistic
simulation, a novel tracking algorithm for vision based pursuit.
We integrate models of differential drive robot kinematics [8],



[9] and target dynamics with a model of the color region
tracking sensor via an extended Kalman filter [10]. Detailed
simulation results demonstrate that the tracking algorithm
substantially reduces the relative position estimation error
introduced by noisy color region tracking.

The algorithm thus enables target pursuit based on an
extremely noisy but simple and low cost sensor, a monocular
camera with color region tracking.

II. JOINT ESTIMATION OF ROBOT AND TARGET STATE

In this section, we describe the tracking algorithm in detail.
We model the robot’s state, the target’s state, and the color re-
gion tracking sensor in the extended Kalman filter framework.

A. System state

The system state expresses the pursuit robot’s position and
the target’s position and dynamics in the world coordinate
frame. We define the system state at time t to be

xt = [xt, yt, zt, w0, h0, ẋt, ẏt, żt, x
r
t , y

r
t , z

r
t , γ

r
t , β

r
t , α

r
t ]
T
,

where (xt, yt, zt) is the target’s position, (w0, h0) is the target’s
size (the object is assumed to be cylindrical), (ẋt, ẏt, żt) is the
target’s velocity, (xrt , y

r
t , z

r
t ) is the pursuit robot’s position, and

(γrt , β
r
t , α

r
t ) is the pursuit robot’s 3D orientation (roll, pitch

and yaw). All positions and orientations are expressed in the
world coordinate frame.

B. State Transition

We assume that initially, the world coordinate frame is
aligned with the robot coordinate frame, i.e., (xr0, y

r
0, z

r
0) =

(0, 0, 0) and (γ0, β0, α0) = (0, 0, 0). (Alternatively, a specific
initial position and orientation could be given.) We further
assume that the vehicle has differential drive kinematics and
is equipped with two encoders, one for each drive wheel. The
odometry control vector is

ut =
[
dLt dRt

]T
,

where dLt is the distance traveled by the left wheel and dRt
is the distance traveled by the right wheel. The distances
are calculated from the number of ticks received from each
encoder, the number of ticks per revolution, and the diameter
of the wheel. The motion model is

xt+1 = f(xt,ut) + νt, (1)

where νt ∼ N (0, Qt). f(xt,ut) has two components. The
first component models the kinematics of a differential drive
robot with constant linear and angular velocity over short
time periods (acceleration is modeled as noise). See Fig. 2
for a schematic. The second component is a first order linear
dynamical system for the target’s motion. We describe each
component in turn.

Fig. 2. Schematic of robot motion model. l is the wheel base, ds is the
distance traveled (arc length), R is the turning radius, and dα is the angle
turned.

1) Pursuit robot motion: For the robot’s motion, we first
introduce some intermediary variables for convenience. The
linear distance traveled by the robot over the interval is

ds =
dLt + dRt

2
.

The change in yaw in the robot coordinate system is

dα =
dLt − dRt

l
,

where l is the wheel base (the distance between the two
wheels). If dα 6= 0, we can write the turning radius

R =
ds
dα
.

With finite R, the robot’s displacement in the robot coordinate
system is defined by[

dx
dy

]
= R

[
1− cos(dα)

sin(dα)

]
. (2)

Note that in addition to arc motions, this also covers the
special case of rotation in place, where dLt = −dRt and
R = 0. However, for the special case of straight motion, when
dLt = dRt and dα = 0, we take the limit of Equation 2 as
R→∞ to obtain [

dx
dy

]
=

[
ds
0

]
.

To convert the robot’s relative motion in the robot ground
plane into the world coordinate frame, we must rotate by the
orientation of the robot’s ground plane at time t:xrt+1

yrt+1

zrt+1

 =

xrtyrt
zrt

+ Rt

dxdy
0

 ,
in detail, expanding Rt, we getxrt+1

yrt+1

zrt+1

 =

xrtyrt
zrt

+

dxcαt
cβt

+ dy(cαt
sβt

sγt − sαt
cγt)

dxsαt
cβt

+ dy(sαt
sβt

sγt + cαt
cγt)

−dxsβt + dycβtsγt

 ,



where c· and s· are shorthand for the cosine and sine functions.
To determine αt+1, βt+1, and γt+1, we let R be the rotation

matrix corresponding to a rotation of dα around the z axis in
the robot ground plane. Then the new orientation of the vehicle,
expressed as a rotation matrix, is

Rt+1 = RtR,

To extract Euler rotations from Rt+1, we use

γt+1 = atan2(r32, r33)

βt+1 = atan2

(
−r31,

√
r232 + r233

)
αt+1 = atan2(r21, r11),

where rij represents the (i, j)-th element of Rt+1.
2) Target motion: We assume the simple linear dynamics

xt+1 = xt + ∆tẋt

yt+1 = yt + ∆tẏt

zt+1 = zt + ∆tżt

wt+1 = wt

ht+1 = ht

ẋt+1 = ẋt

ẏt+1 = ẏt

żt+1 = żt

for the target object’s state. In this paper we assume the object’s
size is fixed and known, so in fact wt = w0 and ht = h0 for
all t.

3) Linearization: Since f(xt,ut) is nonlinear and we will
be using a Kalman filter, we must approximate the system
described in Eq. 1 by linearizing around an arbitrary point x̂t.
We write

f(xt,ut) ≈ f(x̂t,ut) + Jft(xt − x̂t),

where Jft is the Jacobian

Jft =

[
∂f(xt,ut)

∂xt

]
evaluated at x̂t.

C. Sensor model

We assume the robot’s target tracking camera is mounted in
a fixed, nearly vertical position with roll (rotation around the
principle axis) close to 0. We further assume that the system
incorporates a 2D tracking algorithm capable of producing, at
time t, an estimate of the 2D bounding box of the object’s
projection into the camera plane. In our application, the
operator initially selects the bounding box of the target to be
pursued in the first video frame, then we use the standard
CAMSHIFT algorithm from OpenCV to track the object from
frame to frame.

The measurement from such an algorithm is simply a
bounding box:

zt =
[
ut, vt, w

img
t , himgt

]T
,

where (ut, vt) is the center and wimgt and himgt are the width
and height of the bounding box in the image. We model the
sensor with a function h(·) mapping the system state xt to the
corresponding sensor measurement

zt = h(xt) + ζt,

with ζ ∼ N (0, St).
For a pinhole camera with focal length f and principal

point (cx, cy), ignoring the negligible in-plane rotation of the
cylindrical object, we can write

ut = (fxcamt + cx)/zcamt

vt = (fycamt + cy)/zcamt

wimgt = fw0/z
cam
t

himgt = fh0/z
cam
t . (3)

Here xcamt = [xcamt , ycamt , zcamt , 1]T is the homogeneous
representation of the rigid transformation of the target’s center
into the camera coordinate system:

xcamt = T
W/C
t


xt
yt
zt
1

 ,
where the transformation T

W/C
t is defined as

T
W/C
t = TR/CT

W/R
t .

T
W/R
t is the rigid transformation from the world coordinate

system to the robot coordinate at time t, and TR/C is the (fixed)
transformation from the robot coordinate system to the camera
coordinate system. In detail, if from the robot’s orientation at
time t, we obtain the rotation matrix

Rt =

 crαt
crβt

srαt
crβt

−srβt

crαt
srβt

srγt − srαt
crγt srαt

srβt
srγt + crαt

crγt crβt
srγt

crαt
srβt

crγt + srαt
srγt srαt

srβt
crγt − crαt

srγt crβt
crγt

 ,
we can write

T
W/R
t =

[
RTt −RTt xrt
0T 1

]
,

where xrt = (xrt , y
r
t , z

r
t ).

As with the transition model, to linearize h(xt) around an
arbitrary point x̂t, we require the Jacobian

Jht
=

[
∂h(xt)

∂xt

]
.

evaluated at an arbitrary point x̂t.

D. Initialization

To initialize the system, we need an a-priori state vector
x0. As previously explained, we assume the robot is at the
origin of the world coordinate system or that an alternative
initial position is given. We do not assume any knowledge
of the target’s initial trajectory. We can therefore treat the
user-provided initial target bounding box as a first sensor
measurment z0 and write

x̂0 = [x0, y0, z0, w0, h0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T = hinv(z0).



Since w0 and h0 are assumed known, we only need to
estimate the initial world-coordinate position (x0, y0, z0) of
the target from z0. We first obtain an initial position
[xcam0 , ycam0 , zcam0 , 1] in the camera coordinate frame then,
noting that the robot frame at time 0 is also the world frame,
we can map to the world coordinate frame by

x0
y0
z0
1

 =
(
TR/C

)−1


xcam0

ycam0

zcam0

1

 .
Inspecting the system in Eq. 3, we can find xcam0 and ycam0

given ut and vt if zcam0 is known. We can obtain zcam0 from
wimg0 or himg0 . We use zimg0 = fh0/h

img
0 on the assumption

that the user-specified bounding box is more accurate vertically
than horizontally.

E. Noise parameters

The sensor noise is given by the matrix St. We assume that
the measurement noise for both the bounding box center and
the bounding box size are a fraction of the target’s width and
height in the image:

St = λ2


(wimgt )2 0 0 0

0 (himgt )2 0 0

0 0 (wimgt )2 0

0 0 0 (himgt )2

 .
We use λ = 0.1 in our simulations. For the initial state error,
we propagate the measurement error for z0 through hinv(z0)
and take into account the initial uncertainty about the target’s
velocity:

P0 = JhinvS0Jhinv + diag(0, 0, 0, 0, 0, η, η, η, 0, 0, 0, 0, 0, 0).

η is a constant and Jhinv is the Jacobian of hinv(·) evaluated
at z0.

We assume for simplicity that the state transition noise
covariance Qt is diagonal. We let

vt =
√
ẋ2t + ẏ2t + ż2t .

We let the entries of Qt corresponding to the target postion be
∆2
t (ρ1v

2
t + ρ2), and we let the entries of Qt correspoding to

the target velocity be ∆2
t (ρ3v

2
t + ρ4). We let the entries of Qt

corresponding to the robot’s position be ∆2
t (ρ5ds+ρ6), and we

let the entries of Qt corresponding to the robot’s orientation be
∆2
t (ρ7ds+ρ8). This noise distribution is overly simplistic and

ignores many factors, but it is sufficient for the experiments
reported upon in this paper.

F. Update algorithm

Given all the preliminaries specified in the previous sec-
tions, the update algorithm is just the standard extended
Kalman filter, with modification to handle cases where the
color region tracker fails due to occlusions or the target leaving
the field of view. When no sensor measurement zt is available,
we simply predict the system state and allow diffusion of the
state covariance without sensor measurement correction. When

we do have a sensor measurement but the estimated state is far
from the predicted state, we reset the filter, using the existing
robot position and orientation but fixing the relative target state
to that predicted by hinv(zt) and fixing the elements of Pt
by propagating the sensor measurement error for zt through
hinv(zt) as explained in Section II-E. Here is a summary of
the algorithm:

1) Input z0.
2) Calculate x̂0 and P0.
3) For t = 1, . . . , T , do

a) Predict x̂−
t = f(x̂t−1,ut−1)

b) Calculate Jft and Qt
c) Predict P−t = JftPt−1J

T
ft

+ Qt
d) If zt is unavailable

i) Let x̂t = x̂−
t

ii) Let Pt = P−t
e) otherwise

i) Calculate Jht , St, and Kalman gain
Kt = P−t J

T
ht

(JhtP
−
t J

T
ht

+ St)
−1

ii) Estimate x̂t = x̂−
t + Kt(zt − ht(x̂

−
t ))

iii) Update the error estimate Pt = (I− KtJht)P
−
t

f) If ‖x̂t − x̂−
t ‖ > σ, reset the filter

III. EXPERIMENTS AND RESULTS

We performed two simulation experiments to validate the
efficacy of the proposed method for correcting the trajectory
of the target relative to the robot. For both experiments, we
generated a synthetic trajectory for the robot and target and
added random odometry noise and sensor error. The simulated
robot moved at a constant speed of 1 m/s along the S-shaped
curve shown in green on the left of Fig. 3, and the simulated
target moved with a constant speed of 1 m/s along the three
straight paths shown in green on the right of Fig. 3. Included
in the simulation is a period of time where the robot and
target are travelling parallel to each other with the target
outside the robot’s camera’s field of view. During this time,
no sensor measurements are observed. In Experiment I, we
fixed the odometery noise to a typical level, Guassian with
standard deviation equivalent to 9% of the distance traveled.
In Experiment II, we varied odometry noise from 0 to 80% of
the distance traveled and observed our algorithm’s resulting
estimation error. In both experiments, to model the sensor
measurements, we first project the actual synthetic target into
the image, find the bounding box, then add synthetic noise to
the bounding box parameters. The noise was Gaussian with
standard deviation for ut and wimgt equal to 20% of wimgt

and standard deviation for vt and himgt equal to 20% of himgt .
Both experiments used the same simulated camera generating
640×480 images at 20 fps with a focal length of 550 pixels
(horizontal field of view 60◦.

A. Experiment I (fixed odometery noise)

The results for Experiment I, in which we fixed the odom-
etry noise to 9% and the sensor noise to 20%, are shown in
Fig. 3. We observe that the odometry-only estimates of the



Fig. 3. Experiment I results. Robot (left) and target (right) moved along
the green lines. Odometry noise and sensor noise were fixed throughout the
experiment. Blue path and blue points show estimated robot path and sensor
measurements estimated directly from odometry and the sensor measurements
without filtering. Red path and red points show estimated robot path and sensor
measurements with model-based filtering algorithm of Section II. Thick lines
delimeted by filled squares denote the period of time in which the target
was outside the camera view. Red open squares show the propagation of
the estimated target position without any measurements. The filter is able
to smooth the noisy target positions but absolute position measurements are
biased due to robot positioning error.

target’s positions are extremely noisy, due to combined effect
of accumulated odometry error and the error in the sensor
measurements themselves. The corrected target trajectory is
much more smooth than the sensor-only path and is much
closer to the true trajectory initially, when the estimated robot
state is very close to the true state. When the target abruptly
changes direction, the estimated target path is less accurate,
showing hysteresis due to the use of the estimated target
velocity. When the target leaves the field of view, we see that
the the predictions quickly deviate from the true target path,
but the estimate recovers when the target reappears and the
filter is reinitialized.

Both the sensor-only estimated target trajectory and the
corrected target trajectory are relatively far from the true target
path towards the end of the simulation, but this is clearly due to
the accumulated odometry error. In target pursuit, the target’s
position relative to the pursuer is much more important than
the absolute position, so we next analyze, over time, the error
in the target’s estimated position relative to the robot. The data
are shown in Fig. 4.

The results show clearly that model-based correction of the
noisy color region tracking sensor measurements consistently
outperforms sensor-only estimation. Fig. 5 shows an overall
comparison between the relative error of sensor-only estima-
tion and model-based correction. On average, the corrected
target position estimates are more than 50% better than the
sensor-based measurements.

Fig. 4. Experiment I results (relative position error). The relative position
error of the sensor-only estimates are shown in blue, and the relative position
error after model-based correction are shown in red. Sample 40, labeled “1,”
is the point at which the target makes a 90◦ left turn (refer to Fig. 3). Sample
50, labeled “2,” is the point at which the target leaves the camera field of
view. Sample 90, labeled “3,” is the point at which the target reappears in the
camera field of view. Sample 100, labeled “4,” is the point at which the target
makes a 90◦ right turn. The filter reduces the relative position error and also
reduces the variance of the relative position error.

Fig. 5. Experiment I results (average relative position error). Error bars
denote 95% confidence intervals. The filter reduces the relative position error
by more than 50%.

B. Experiment II

Our method attempts to optimally combine odometry infor-
mation and sensor measurements to improve upon the relative
target position estimation error of sensor-only estimation. This
means that our method will perform better with more accurate
odometry and conversely worse with less accurate odometry.
This might limit the ability of our method when the pursuit
robot is moving over rough terrain, for example. To test this
expected dependency of model-based correction on accurate
odometry, in Experiment II, we compared the performance
of sensor-only estimation and model-based correction under
increasing odometry error. We began with odometry error of



0 (the robot always has exact knowledge of its position) and
gradually increased the standard deviation of the noise added to
the odometry measurements up to 80% of the distance traveled.
For each noise level, we repeated the experiment 10 times, with
the same setup and robot and target trajectories as Experiment
I. Fig. 6 shows the average relative target position error as
a function of odometry error level. As expected, sensor-only
estimation shows no sensitivity to odometry error level, but
our method is indeed sensitive to the odometry error level.
However, for the reasonable range (20% or less), our method
still substantially outperforms sensor-only estimation.

Fig. 6. Experiment II results. We repeated Experiment I with different levels
of odometry noise and measured the average relative target position error for
sensor-only estimation and model-based correction. Error bars denote 95%
confidence intervals.

IV. CONCLUSION

Target pursuit is an extremely useful technology for surveil-
lance applications. However, there is no existing system able to
track and pursue arbitrary targets autonomously. In this paper,
we take first steps towards the goal of enabling a relatively
simple ground-based robot with a monocular camera to track
an arbitrary target during pursuit of that target. For the sensor,
we propose the use of a color histogram based region tracker.
The only manual intervention needed is that the operator must
describe the initial bounding box of the target in the video
feed, and the only prior knowledge needed is the height of the
target in the real world.

Although 2D color region tracking has obvious benefits —
such trackers are extremely fast and rarely lose their target
— they are quite noisy. In a first experiment, we show that
our filter, which incorporates models of both the color region
tracking sensor and the sensor’s (robot’s) motion, substantially
reduces the relative position estimation error incurred by the
noisy sensor. In a second experiment, we show that the filter
is quite robust to reasonable levels of odometry error.

There are some limitations to this preliminary work. The
method has not yet been tested in the real world. Color region
tracking alone may not be suitable for all environments and
all targets. We currently require knowledge of the target’s
height to achieve accurate tracking results. The absolute target
position estimates are not very accurate.

In future work, we plan to address all of these issues, by
testing the algorithm on our ROS-based pursuit robot testbed,
experimenting with more sophisticated trackers, treating un-
known target geomtry as a hidden estimation problem, and
using real time visual odometry to further improve upon
odometry error during pursuit.

ACKNOWLEDGMENTS

This research was supported by a Royal Thai Government
research grant to MND and PL. AB was supported by graduate
fellowships from the University of Balochistan, the Higher
Education Commission of Pakistan, and the Asian Institute of
Technology.

REFERENCES

[1] M. Yokoyama and T. Poggio, “A contour-based moving object detection
and tracking,” in Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop
on, oct. 2005, pp. 271 – 276.

[2] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli, “Surftrac: Efficient
tracking and continuous object recognition using local feature descrip-
tors,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, june 2009, pp. 2937 –2944.

[3] H. Zhou, Y. Yuan, and C. Shi, “Object tracking using sift features and
mean shift,” Computer Vision and Image Understanding, vol. 113, no. 3,
pp. 345 – 352, 2009.

[4] Y. Wei and L. Tao, “Efficient histogram-based sliding window,” in Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, june 2010, pp. 3003 –3010.

[5] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid
objects using mean shift,” in Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, vol. 2, 2000, pp. 142–149.

[6] ——, “Kernel-based object tracking,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 25, no. 5, pp. 564–577, May
2003.

[7] J. G. Allen, R. Y. D. Xu, and J. S. Jin, “Object tracking using camshift
algorithm and multiple quantized feature spaces,” in 2003 Pan-Sydney
Area Workshop on Visual Information Processing (VIP2003), ser.
CRPIT, M. Piccardi, T. Hintz, S. He, M. L. Huang, and D. D. Feng,
Eds., vol. 36. Sydney, Australia: ACS, 2004, pp. 3–7. [Online].
Available: http://crpit.com/confpapers/CRPITV36Allen.pdf

[8] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[9] M. Niulescu, “Theoretical Aspects in Wheeled Mobile Robot Control,”
in Automation, Quality and Testing Robotics, vol. 2, 2008, pp. 331–336.

[10] G. Welch and G. Bishop, “An introduction to the kalman filter,” In
Practice, vol. 7, no. 1, pp. 1–16, 2006.


