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Abstract—The reconfigurable spherical robot called “RSR” is 

a transformable robot that store its three legs in the spherical 

shell. The RSR II is an ongoing work developed at King 

Mongkut’s University of Technology North Bangkok. At 

deployment, the robot can be transformed into a mobile form 

of dual interconnected hemispheres. Two legs are kept on one 

side of the hemisphere and one leg is on the other. Each leg is 

identical and has been designed with four degrees of freedom 

for good mobility. This paper represents the inverse kinematics 

analysis of one leg of the RSR II. The use of Denavit-

Hartenberg (DH) method was illustrated to analyze for the 

forward kinematics of the leg. The solution of the closed form 

inverse kinematics of the leg was explained as well as the 

trajectory design for each leg. 

Keywords- spherical robot, inverse kinematics 

I.  INTRODUCTION 

Spherical robots have become more interested in many 
roboticist since its body can roll efficiently in various 
environment and can be easy in transportation and 
deployment. Nevertheless, the spherical body has its 
constraint; for example, the driving forces has to be driven 
from inside of the shell, or the body can be opened to 
become a wheeled or legged type robot. 

Many researchers have been constructed various types of 
spherical shape robot with self driving from inner shell. First 
type of spherical robot consists of robots that include 
wheeled robot inside the shell. The shell is rolling by moving 
the wheel or some devices to propel force on the shell 
surface such as Bicchi et al [1], Hou [2], Kim [3]. 

Another type of spherical robots use the effect of inner 
pendulum. The center of mass of the spherical is deviated 
from its center by rotating the arm of the pendulum causing 
motion on the shell Salter [4], Gajbhiye [5]. A deformable 
spherical rolling robot using SMA actuators that achieves an 
eccentric center of mass by changing the shape of the 
spherical shell by Sugiyama et al [6]. 

Most of the previous work on spherical robot locomotion 
have been done on either the inner driving mechanism or the 
deformable shell’s surface. The authors have developed a 
method in which the robot in spherical shape can transform 
into a three-legged robot [7]-[10]. 

Previously, the RSR II has been designed and constructed 
but has no complete analytical inverse kinematic solution. 
This paper represents the inverse kinematics analysis 

equation on each leg for design the trajectory of robot by 
using an ellipse mathematical equation. 

Inverse kinematics problem is one of the important topics 
in robotic research. There are various types of method such 
as neural networks [11], closed form inverse kinematics [12]. 
This work uses a closed form analysis for the inverse 
kinematic analysis of the leg of RSR II. 

II. BACKGROUND 

The RSR II consists of two hemispherical shells and 
three legs kept inside the shell as shown in Fig. 1. The outer 
shells are made of fiberglass to strengthen its structure with a 
diameter of 350 mm. 

For simplicity, all three legs have the same configuration. 
There are a total of 4 motors on each leg: 2 motors for 
shoulder/hip joint, 1 motor/degree of freedom for elbow, and 
1 motor/degree of freedom for wrist joint. 

Each leg is attached to the edge of hemispherical shell. 
The transformation process is driven by a motor at each joint. 
When fully transformed, the robot leg should be able to 
provide standing on ground. The robot has three 
omnidirectional passive wheels with a radius of 50 mm 
attached to the end of each leg. 

 
Figure 1. Three-legged RSR 

III. LEG KINEMATICS 

We consider the kinematics of the leg in two parts; 
forward kinematics using Denavit-Hartenberg (DH) 
parameters and inverse kinematics in closed form. 

A. Forward Kinematics 

The robot has three identical leg kinematics. Each leg is a 
4-DOF leg where all joints are revolute driven by 4 
servomotors. The coordinate frame assignment are illustrated 
in Fig. 2. The DH parameters are listed in Table I. The 
coordinate frame (x0; y0; z0) to (x3; y3; z3) represent the local 
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coordinates frames at the four joints respectively, (x4; y4; z4) 
shows the local coordinate frame at the end effector. 

 
Figure 2. Leg kinematics 

TABLE I. DH PARAMETERS 

i  i  ia  id  i  

1 
2


  

1L  0 1  

2 
2

  
2L  0 2  

3 0 3L  0 3  

4 0 4L  0 4  

 
From the DH parameters, the transformation matrix from 

joint i to joint i+1 can be derived by: 
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T              

    321314321314 CCCCSSCCCSSCnx    

    321314321314 SCSCCSCCSSCCny   

 432432 CCSSSSnz     

    321314321314 SCCCSCCCCSSSox   

    321314321314 CCSSCSSCSCCCoy   

 432432 CSSSCSoz     

 21SCax      

 21SSay      

 2Caz      

where xp ; yp ; zp  are the global coordinates of the end 
effector shown below: 
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


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

2243243234324 SLCCSLCSLSSSLpz    

where 4,3,2,1,sin,cos  iSC iiii  

B. Inverse Kinematicsmatis 

The forward kinematics equations are nonlinear. It is 
clearly that the inverse kinematics solution is difficult to 
solve. From equation (7) - (18), there will be many solutions 
of the equations. 

Therefore, we use some technique to reduce those many 
solutions by defining some assumption for the problem. This 
paper uses the fixed orientation with the XYZ coordinate 
system as shown in Fig. 3. 



Figure 3. Leg orientation 
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Fig. 3 represents an end of effector orientation relative to 
the base coordinate system. a  is the unit vector that has 

direction toward the object. o  has its direction following 

with the end effector and vector n  is the normal vector of a 

and o following by the right hand rule. 

From equation (13) and (14) we can solve for 1 : 

],[2tan1 xy aaa   

Then multiplying equation (6) on both sides with 

transformation matrix 
1

01
T we get 


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
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We can rewrite the equation as shown below 

 ],,,[],,,[ HGFEDCBA   
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Consider 

  4344343322111 SSLCCLCLLCLSpCp yx  

  4344343322 SSLCCLCLLSpz   


 4344343311 CSLSCLSLSpCp xy   

From (27) and (28 ) can solve for 2  
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z  

In some cases, when we multiply transformation matrix 
1

01
1

12
 TT  on both sides of the equation (20) we will get 
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Consider factor of equation (32 ) then 

2122212143443433 CSpLSpCLCCpSSLCCLCL yzx   

From equation (37)
2
 we get 

   221222121
2

43443433 CSpLSpCLCCpSSLCCLCL yzx  

From equation (28)2 we get 

    211
2

43443423 SpCpCSLSCLSL xy  

Summing the equation (38) and (39), we will get    

 

 211

2
21222121

443
2
4

2
3 cos2

SpCp

CSpLSpCLCCp

LLLL

xy

yzx





 
 

Define 

   211
2

21222121 SpCpCSpLSpCLCCpC xyyzx   
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Rewrite 

 CLLLL  443
2
4

2
3 cos2     

We can now solve for 3  













 
 

43

2
4

2
31

4
2

cos
LL

LLC
   

From the equation (37) can reformation to get 

    344344311 CSLSCLLSpCp xy   

From trigonometry 

cba   cossin 

When 
443 CLLa   44SLb  and 11 SpCpc xy  

We can now solve for 4  






  bccbaaaccbaa 222222
3 ,2tan 

IV. TRAJECTORY DESIGN 

The motion of the two front legs of the robot has been 
designed to be able to walk like butterfly walking pattern.  

For the motion of left leg and right leg, we will be using 
ellipse equation (46), (47) respectively 














cos140

sin8080

y

x
 













cos14010

sin8080

z

x
  

Fig. 4 and Fig. 5 shows the trajectory design of the left 
and right leg respectively.  The trajectory of the left and right 
leg are mirroring during the walking pattern. 

For the back leg in equation (48) 













cos10050

sin50150

y

x
   

The back leg trajectory gives the forward propulsion of 
the robot as shown in Fig. 6.    

The joint angle function on each link will be a function of 
time as a polynomial order 3 as shown in equation (49) 

  3
3

2
210 tatataatq   

with initial conditions are 

  startq 0    goalgtq     00 q and   0gtq 

Solving for coefficients of the polynomial from initial 

conditions 0start ;  goal ; 0gt sec, we get 

Therefore the q(t) is a function as 

  32 00628.00942.0 tttq   

V. EXPERIMENTAL RESULTS 

For statically stable, it is required that at least three legs 
are on the ground while moving. Since this robot II has three 
legs, there must be some arbitrary contact while some legs 
are off the ground. This work proposed the three legs 
walking inspired by the butterfly walking concept. While a 
pair of front legs lift off the ground, the lowest part of its 
hemisphere helps support for stable walking until both front 
legs touch the ground to push and lift its body for moving 
forward. One back leg pushed to drive the robot moving 
forward. 

Results has been verified in MATLAB in the trajectory 
planning for leg moving in butterfly walking concept as 
shown in Fig. 7. The trajectory of three legs are shown in Fig. 
8. 

In forward motion, the two front legs trajectory give 
swing motion correlating with the graph shown in Fig. 9 and 
10. The back leg trajectory gives pushing force as shown in 
Fig. 11. 

 
Figure 4. Trajectory design of left leg 


Figure 5. Trajectory design of right leg 

 
Figure 6. Trajectory design of back leg  

34



 
Figure 7. Simulation results in butterfly walking concept 

 
Figrue 8. Trajectory of three legs 

 

Figure 9. Joint angle for right leg 

 

Figure 10. Joint angle for left leg 

 

Figure 11. Joint angle for back leg 

VI. CONCLUSIONS 

An analytical solution of the inverse kinematic problem 
for reconfigurable spherical robot II has been proposed. The 
solution is given in a closed from. Thus analysis for perfect 
answer of inverse kinematics equation as presented in this 
work can make three legs reconfigurable spherical robot 
moving in the concept of butterfly walking pattern. In future 
work, we will use this concept to apply to the actual 
reconfigurable spherical robot II walking. 
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