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Abstract—The reconfigurable spherical robot called “RSR” is
a transformable robot that store its three legs in the spherical
shell. The RSR Il is an ongoing work developed at King
Mongkut’s University of Technology North Bangkok. At
deployment, the robot can be transformed into a mobile form
of dual interconnected hemispheres. Two legs are kept on one
side of the hemisphere and one leg is on the other. Each leg is
identical and has been designed with four degrees of freedom
for good mobility. This paper represents the inverse kinematics
analysis of one leg of the RSR Il. The use of Denavit-
Hartenberg (DH) method was illustrated to analyze for the
forward kinematics of the leg. The solution of the closed form
inverse kinematics of the leg was explained as well as the
trajectory design for each leg.
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l. INTRODUCTION

Spherical robots have become more interested in many
roboticist since its body can roll efficiently in various
environment and can be easy in transportation and
deployment. Nevertheless, the spherical body has its
constraint; for example, the driving forces has to be driven
from inside of the shell, or the body can be opened to
become a wheeled or legged type robot.

Many researchers have been constructed various types of
spherical shape robot with self driving from inner shell. First
type of spherical robot consists of robots that include
wheeled robot inside the shell. The shell is rolling by moving
the wheel or some devices to propel force on the shell
surface such as Bicchi et al [1], Hou [2], Kim [3].

Another type of spherical robots use the effect of inner
pendulum. The center of mass of the spherical is deviated
from its center by rotating the arm of the pendulum causing
motion on the shell Salter [4], Gajbhiye [5]. A deformable
spherical rolling robot using SMA actuators that achieves an
eccentric center of mass by changing the shape of the
spherical shell by Sugiyama et al [6].

Most of the previous work on spherical robot locomotion
have been done on either the inner driving mechanism or the
deformable shell’s surface. The authors have developed a
method in which the robot in spherical shape can transform
into a three-legged robot [7]-[10].

Previously, the RSR I1 has been designed and constructed
but has no complete analytical inverse kinematic solution.
This paper represents the inverse kinematics analysis
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equation on each leg for design the trajectory of robot by
using an ellipse mathematical equation.

Inverse kinematics problem is one of the important topics
in robotic research. There are various types of method such
as neural networks [11], closed form inverse kinematics [12].
This work uses a closed form analysis for the inverse
kinematic analysis of the leg of RSR 11.

Il.  BACKGROUND

The RSR Il consists of two hemispherical shells and
three legs kept inside the shell as shown in Fig. 1. The outer
shells are made of fiberglass to strengthen its structure with a
diameter of 350 mm.

For simplicity, all three legs have the same configuration.
There are a total of 4 motors on each leg: 2 motors for
shoulder/hip joint, 1 motor/degree of freedom for elbow, and
1 motor/degree of freedom for wrist joint.

Each leg is attached to the edge of hemispherical shell.
The transformation process is driven by a motor at each joint.
When fully transformed, the robot leg should be able to
provide standing on ground. The robot has three

omnidirectional passive wheels with a radius of 50 mm
attached to the end of each leg.

Figure 1. Three-legged RSR

I1l.  LEG KINEMATICS

We consider the kinematics of the leg in two parts;
forward kinematics using Denavit-Hartenberg (DH)
parameters and inverse kinematics in closed form.

A. Forward Kinematics

The robot has three identical leg kinematics. Each leg is a
4-DOF leg where all joints are revolute driven by 4
servomotors. The coordinate frame assignment are illustrated
in Fig. 2. The DH parameters are listed in Table 1. The
coordinate frame (Xo; Yo; Zo) 10 (Xs; Ya; Z3) represent the local



coordinates frames at the four joints respectively, (X4; Ya; Z4)
shows the local coordinate frame at the end effector.
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Figure 2. Leg kinematics

TABLE I. DH PARAMETERS
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From the DH parameters, the transformation matrix from
joint i to joint i+1 can be derived by:
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a, =CS, (13)
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where p,; p,; p, are the global coordinates of the end

effector shown below:
Px = LC —L,Cy (5153 —C1C2C3)
—L454(8,C53 +C,C,C3)+ L,C,Cy — L3S,S5 (16)

Py =LS; + |—4C4(C153 + Slczcs)
+L,45,4(C,C3 —S,C,S;3)+ L,S,C, + L3CyS5 (17)
+L3S,C,Cy

Pz = 4525354 — L3S;C5 — LyS2C5C, — LS (18)
where C; =cos é;,S; =siné;,i=123,4

B. Inverse Kinematicsmatis

The forward kinematics equations are nonlinear. It is
clearly that the inverse kinematics solution is difficult to
solve. From equation (7) - (18), there will be many solutions
of the equations.

Therefore, we use some technique to reduce those many
solutions by defining some assumption for the problem. This
paper uses the fixed orientation with the XYZ coordinate
system as shown in Fig. 3.

Figure 3. Leg orientation



Fig. 3 represents an end of effector orientation relative to
the base coordinate system. a is the unit vector that has
direction toward the object. 0 has its direction following
with the end effector and vector n is the normal vector of a
and o following by the right hand rule.

From equation (13) and (14) we can solve for 6, :

6, =atan2[a,,a,] (19)

Then multiplying equation (6) on both sides with
transformation matrix To_l1 we get

nX OX aX pX
TodToMisTasTaa =Tgd| ¥ & % Py 20
0ifothaloslas =Tot| * * 7 (20)
0 0 0 1
We can rewrite the equation as shown below
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From (27) and (28 ) can solve for 8,
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In some cases, when we multiply transformation matrix
Tl_leo_ll on both sides of the equation (20) we will get
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Consider factor of equation (32 ) then

LsCs + LuCaCy — LaS3S4 = PyCiCo — LGy — P, S, — Lo + pySICy (37)
From equation (37)* we get

(LiCs + LiCiCy — LS3Ss F = (p,CICo —LiC — S, — Ly + p,SC, f (38)

From equation (28)2 we get

(LS +L4CaSs + LsS3Cs f = (pycl - szl)z (39)
Summing the equation (38) and (39), we will get
L3 +12 +2L,L, cos0, = (40)

(pxClCZ -LCy—p,S,-Ly + pyslcz)2
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Rewrite

L2+ L2 + 23l 086, =C (42)
We can now solve for 6,
_12_42
04 = C0571 M (43)
205,
From the equation (37) can reformation to get
PyC1— PxSt = (Ls + LaCs)S3 + (LsS4 )Cs (44)

From trigonometry
asind+bcos@=c
When
a=Llg+L,Cq, b=1,S, and c=p,C; - p, S

We can now solve for 6,
0, =atan 2[\/512 +b?—c? +ac,—ava® +b% —c? + bc} (45)

IV. TRAJECTORY DESIGN

The motion of the two front legs of the robot has been
designed to be able to walk like butterfly walking pattern.

For the motion of left leg and right leg, we will be using
ellipse equation (46), (47) respectively

x=80+80sin¢

(46)
y =140c0s ¢
x=80+80sin¢

(47)
z=-10+140cos ¢

Fig. 4 and Fig. 5 shows the trajectory design of the left
and right leg respectively. The trajectory of the left and right
leg are mirroring during the walking pattern.

For the back leg in equation (48)

{x =150+50sin ¢

(48)
y =50+100cos ¢

The back leg trajectory gives the forward propulsion of
the robot as shown in Fig. 6.

The joint angle function on each link will be a function of
time as a polynomial order 3 as shown in equation (49)

q(t)=ay +at +a,t? +ast? (49)
with initial conditions are
q(o) = estarta Q(tg ): ggoal ’ q(o) =0and Q(tg ): 0

Solving for coefficients of the polynomial from initial
conditions O, =0 Oyoqa =7 ; ty =0sec, we get

Therefore the q(t) is a function as
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q(t)=0.0942t? —0.00628t> (50)

V.

For statically stable, it is required that at least three legs
are on the ground while moving. Since this robot Il has three
legs, there must be some arbitrary contact while some legs
are off the ground. This work proposed the three legs
walking inspired by the butterfly walking concept. While a
pair of front legs lift off the ground, the lowest part of its
hemisphere helps support for stable walking until both front
legs touch the ground to push and lift its body for moving
forward. One back leg pushed to drive the robot moving
forward.

Results has been verified in MATLAB in the trajectory
planning for leg moving in butterfly walking concept as
shown in Fig. 7. The trajectory of three legs are shown in Fig.
8.

EXPERIMENTAL RESULTS

In forward motion, the two front legs trajectory give
swing motion correlating with the graph shown in Fig. 9 and
10. The back leg trajectory gives pushing force as shown in
Fig. 11.
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Figure 4. Trajectory design of left leg
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Figure 5. Trajectory design of right leg
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Figure 6. Trajectory design of back leg
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Figure 7. Simulation results in butterfly walking concept
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Figure 9. Joint angle for right leg

Angle og Left Leg

o ' 1 e
. [ ]
20 SO SURUPN ASPRIOE ¥ SU
. YA, A\
S\ JAT I
o V)

. 4 /
RIRNVA I %N

100 - - - L

5 0 15 20 25 30 3% 40
Time(Second)

Figure 10. Joint angle for left leg
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Figure 11. Joint angle for back leg
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VI. CONCLUSIONS

An analytical solution of the inverse kinematic problem

for reconfigurable spherical robot Il has been proposed. The
solution is given in a closed from. Thus analysis for perfect
answer of inverse kinematics equation as presented in this
work can make three legs reconfigurable spherical robot
moving in the concept of butterfly walking pattern. In future
work, we will use this concept to apply to the actual
reconfigurable spherical robot 11 walking.
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